
Rust for
the IoT

Building Internet of Things Apps with
Rust and Raspberry Pi
—
Joseph Faisal Nusairat

Rust for the IoT
Building Internet of Things Apps

with Rust and Raspberry Pi

Joseph Faisal Nusairat

Rust for the IoT: Building Internet of Things Apps with Rust and Raspberry Pi

ISBN-13 (pbk): 978-1-4842-5859-0 ISBN-13 (electronic): 978-1-4842-5860-6
https://doi.org/10.1007/978-1-4842-5860-6

Copyright © 2020 by Joseph Faisal Nusairat

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image by Maarten van den Heuvel on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.
springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science +
Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484258590. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Joseph Faisal Nusairat
Scottsdale, AZ, USA

https://doi.org/10.1007/978-1-4842-5860-6

To my beautiful, wonderful, wife Heba Fayed, your patience and
support is what got this book finished. Thank you for everything you

do.

v

About the Author ��� xiii

About the Technical Reviewer ���xv

Acknowledgments ���xvii

Preface ���xix

Table of Contents

Chapter 1: Introduction��� 1

Who Is This Book For? ��� 2

What Is IoT? �� 2

IoT 10K Foot Picture �� 3

Why Rust? ��� 6

Pre-requisites ��� 7

Components to Purchase ��� 7

Goals ��� 9

Source Code �� 10

Web Application �� 10

Board Application �� 12

Basic Rust ��� 13

Rust Origins ��� 13

Learning Rust �� 15

Installing Rust �� 16

Hello World �� 17

Writing in Rust �� 17

Variables and Data Types ��� 18

Borrowing and Ownership ��� 21

vi

Traits �� 25

Cargo ��� 29

Summary��� 31

Chapter 2: Server Side �� 33

Goals ��� 34

Microservice Architecture ��� 34

Why Microservices? �� 35

Backend Design �� 37

Database Design ��� 38

RESTful Endpoints ��� 40

Deploying �� 40

Docker ��� 41

Web Framework �� 41

Choosing a Web Framework ��� 41

Start Up Basic Iron ��� 42

Database with Diesel �� 56

Getting Started �� 57

Configuring the App ��� 57

Creating the Database Tables �� 58

Basics �� 65

Using Enumerations �� 69

Relationships ��� 73

Using a UUID �� 74

Integrating with Our Application �� 76

More Web Framework ��� 82

Command-Line Parameters ��� 82

Error Handling ��� 86

Loggers �� 88

Summary��� 90

Table of ConTenTs

vii

Chapter 3: File Uploading and Parsing ��� 91

Goals ��� 92

Parsing Image Data ��� 92

EXIF�� 94

Kamadak EXIF�� 94

Data Structure ��� 95

Reading the Image �� 97

Parsing Video Data �� 104

Mp4Parser ��� 105

Our Data Structure ��� 105

Reading the Video �� 106

File Uploads �� 110

Upload File ��� 110

Creating the Metadata �� 120

Upload File ��� 121

Send Data to Retrieval Services �� 122

Storing the Metadata �� 124

Update the Database ��� 125

Update the Structs ��� 127

Parse the Incoming Data ��� 129

Save the Data �� 130

Summary��� 131

Chapter 4: Messaging and GraphQL ��� 133

Goals ��� 133

GraphQL �� 133

Problems with REST �� 134

GraphQL to the Rescue �� 135

Juniper �� 141

Messaging ��� 149

Purpose in the IoT System ��� 149

Our Design ��� 150

Table of ConTenTs

viii

Starting Up Local Messaging Service �� 151

Calling Messaging Service Locally �� 152

Create the Messaging Service ��� 156

Summary��� 172

Chapter 5: Performance �� 173

Goals ��� 174

CQRS ��� 175

CQRS Steps�� 178

Which CQRS to Use? �� 179

Event Sourcing �� 180

Implementing in Our Application ��� 181

Setting Up Our Environment �� 182

Creating Our CQRS Objects �� 184

Calling Our Commanded Endpoint ��� 190

Processing the Event Stream �� 197

Cap’n Proto ��� 204

Cap’n Proto �� 206

Summary��� 234

Chapter 6: Security ��� 237

What We Aren’t Covering ��� 238

Goals ��� 238

Authenticate Endpoints ��� 239

Authorization vs� Authentication �� 240

OAuth 2 �� 240

Applying AuthZ and AuthN ��� 241

Authenticating ��� 256

Securing MQTT �� 275

Certificates �� 277

Creating Our New Message Queue Service ��� 286

Summary��� 288

Table of ConTenTs

ix

Chapter 7: Deployment ��� 289

What to Deploy �� 289

Microservices �� 290

Data Services �� 290

How to Deploy ��� 291

Deployment Options �� 291

Goals �� 292

Docker ��� 292

What Is Containerization �� 294

Using Docker in Our Applications �� 309

Deploying with Kubernetes ��� 313

How Kubernetes Works ��� 314

Deploying to Kubernetes ��� 319

Helm Charts �� 340

What It Does �� 341

Installing Helm ��� 342

Creating a Helm Chart ��� 343

Mapping Our Deployments �� 347

Deploying Your Helm Chart �� 366

Standing Up the System�� 371

DigitalOcean �� 372

Attaching to DigitalOcean Kubernetes ��� 381

Deploying to DigitalOcean ��� 384

Setting Up Gitlab CI/CD Pipeline �� 384

Summary��� 389

Chapter 8: Raspberry Pi ��� 391

Goals ��� 391

Raspberry Pi �� 392

Create Raspberry Pi Image ��� 392

Table of ConTenTs

x

Unbox the Raspberry Pi ��� 393

Assembling Raspberry Pi �� 394

OS Software ��� 399

Client Application �� 413

Hello World Application �� 414

Developing the Client Application �� 418

Summary��� 427

Chapter 9: Sense HAT ��� 429

Goals ��� 429

Hardware �� 430

Install ��� 431

Sensors �� 435

Creating Interactions ��� 456

Logging In ��� 468

Yup OAuth 2 ��� 468

Authentication Library ��� 470

Auth0 FlowDelegate �� 476

Raspberry Pi App Integration ��� 479

Summary��� 481

Chapter 10: Camera �� 483

Goals ��� 484

Facial Recognition ��� 485

Installation �� 485

Cross ��� 490

Rust Embedded – Cross Crate ��� 491

Open Computer Vision ��� 499

Installing OpenCV �� 500

Running the Application��� 501

Deploying to the Pi �� 520

OpenCV Install ��� 521

Summary��� 523

Table of ConTenTs

xi

Chapter 11: Integration��� 525

Uploading Video �� 526

SQLite �� 526

Sending Commands �� 540

IPC ��� 541

Application ��� 541

HomeKit �� 553

HomeKit Accessory Protocol (hap-rs) �� 554

Creating Our HomeKit �� 556

Adding to Homekit ��� 568

Summary��� 576

Chapter 12: Final Thoughts ��� 577

Custom Buildroot �� 578

Provisioning the Application �� 584

Last Words �� 584

 Index ��� 585

Table of ConTenTs

xiii

About the Author

Joseph Faisal Nusairat, author of three Apress books, is currently a Senior Staff Engineer

at Tesla, developing the next generation of products for the Platform Engineering team.

He has experience in a full range of the development life cycle from requirements

gathering, to full stack development, to production support of applications, in addition

to speaking, coaching, and training of software. Joseph started his career in 1997 doing

primarily Java/JVM full stack applications. In the Java realm, he became proficient

and gave talks on Java, Groovy, Scala, Kotlin, and Clojure. In the last few years, other

languages like Rust, Go, and Elixir have caught not only his interest but his dedication.

Over the years, he's learned to create code that not only is readable but maintainable all

while trying to minimize its memory footprint and maximizing performance. His career

has led through a variety of industries from banking, insurance, fraud, retailers, defense,

and now electric cars. Joseph is a graduate of Ohio University with dual degrees in

Computer Science and Microbiology with a minor in Chemistry.

Joseph is a published author, speaker, and trainer. He can be found on twitter, github,

and gitlab as @nusairat.

xv

About the Technical Reviewer

Kan-Ru Chen is a Software Engineer at Amazon who builds

cloud services for millions of customers. Before that,

Kan-Ru worked six years at Mozilla, tuning Firefox

performance. He was exposed to the Rust programming

language while at Mozilla and fell in love with it.

At his free time, he enjoys contributing to free and open

source projects, like Rust. He is also a long-time Debian

Developer. His main areas of interest include programming

languages, parser, compiler, performance, and security.

You can reach him at kanru.rust [at] kanru.info or on Twitter at @kanru.

xvii

Acknowledgments

Technical books are one of the biggest labors of love for those who write. They most

often don't make much money for the amount of time we spent working on them and

are mostly written to fulfill a dream of writing something we are passionate about and a

desire to communicate with you that information. This dream is not fulfilled by just the

author, there are many people along the way that help both directly and indirectly, and I

would be remiss if I did not thank them for getting me there.

First, the love of my life, Heba. You met me when I first started writing this book and

have supported me every step of the way. This included many weekends we couldn't go

out because I was working on the book, many vacations I had my laptop open, and many

late nights I didn't go to bed till late because of it. Not only did you support me but you

helped me with some of the diagrams, as well as proofreading the book to tell me when

my explanations made no sense. You are amazing!

Mac Liaw, you've been not only a great friend but an awesome mentor as well. You've

given me opportunities for not only new jobs, but you were there responding to texts at

1 a.m. when I was getting stuck on topics for the book. Your help was greatly appreciated.

Also thank you for the excellent advice on where to propose to Heba; it made that day

unforgettable.

Next my technical reviewer Kan-Ru Chen, I can't thank you enough; you did cause

my author reviews to run longer, but you saved my butt by pointing out in detail sections

that were convoluted, incorrect, or could have been written better. Often we are pushed

to get things done in a timely fashion and one ends up rushing. I'm grateful to have had

you help fix those errors and provide great feedback. And Mark Powers, my editor, who I

initially told this book will be done in September or late fall, thank you for your patience

in letting me put together an enormous set of information even though it meant missing

quite a few deadlines.

Joseph Swager, the man who dragged me out to the bay and gave me a shot in some

new directions in my work life and also whose idea it was to write this book in the first

place and was initially my coauthor, you unfortunately had to bail a few chapters in due

to work, but hopefully our shared vision is what this book ended up being. Next book

we'll do!

xviii

Additionally, my past work experience has been littered with many people who've

helped not only make me a better developer but helped me in my career and world

advice. You all have been there to help guide and give feedback and support when

needed. Brian Sam-Bodden, founder of Integrallis Software, you got me into writing my

first book, giving my first presentation, never would I have gotten this far without you.

Jason Warner, you gave me my first job in Arizona, and continue to give great advice to

this day. (Incidentally, he has a GitHub page where you can get great advice/perspective

too; I say we force him to keep answering questions for years to come (github.com/

jasoncwarner/ama).)

And a final few folks: Jeff Hart, thanks for all your technical wisdom on cloud systems

and for helping me to debug my Rust code at random times. Aaron Kark, we worked

together 18 years ago, and 1 year ago, hopefully it doesn't take 17 more to work together

again. Kelli Alexander and Veronica Martinez, thanks for being very supportive friends. I

also want to give a final praise to my current team: Sheen, Ilia, Kouri, Konstantin, Clark,

Ross, Issac, Crystal, and Nick, you are of the best groups of people I've ever had the

pleasure of working with.

Lastly, thank you, the reader, for picking up and selecting this book. I really hope it

helps you despite what errors may have snuck into the code. This book has taken more

time than I initially had planned and has been one of the biggest labors of love in my

professional career. I hope I've delivered something you can really learn from.

Very last, thank you mum, you're the best mother, grandma, person I know.

aCknowledgmenTs

xix

Preface

This book is for anyone with programming experience who wants to jump into the

Internet of Things space. This book covers the set from cloud application building and

deploying to creation of the Raspberry Pi application and communication between.

While there are many crates in the Rust world to write applications, this book shows you

which crates you will need and how to combine them together to create a working IoT

cloud and device application. This book while not an advanced Rust language book does

cover a few more advanced features. It is best to have at least some understanding before

starting.

 Chapter Listing
The book is composed of the following chapters:

• Chapter 1 – This covers what this book is going to solve; we tackle

the issues and problems surrounding IoT applications and their

architecture. We also go over the hardware that is needed for this

book, and the chapter ends with some simple Rust examples.

• Chapter 2 – This starts with setting up and creating our first

microservice, the retrieval_svc; this will set up simple calls to it and

integrate and set up the database for it.

• Chapter 3 – This chapter is more heavily focused on the upload_svc,

and in here we learn how to upload images and video files to store

locally. We then parse the metadata out of the files and call the

retrieval_svc to store their metadata.

• Chapter 4 – Back to the retrieval_svc, we add GraphQL to use on

top of the web tier instead of pure RESTful endpoints. We also create

the mqtt_service that will serve as our bridge to communicate

between the back end and the Pi using MQTT.

xx

• Chapter 5 – Enhancing both the retrieval_svc and the

mqtt_service by using serialized binary data via Cap’n Proto

to talk, instead of having the communication between the two be

REST calls. Also on the retrieval_svc side, we add CQRS and

eventual consistency to our graph mutations for comments.

• Chapter 6 – This adds using Auth0 to authenticate the user so that

our database can identify a device to a user. We also add self-signed

certificates to secure the communication of the MQTT.

• Chapter 7 – In this chapter, we learn how to create Docker images

of all our microservices, combining them with Kubernetes and

deploying to a cloud provider with Helm charts.

• Chapter 8 – This is our first hands-on chapter with the Raspberry Pi

in which we will set up the heartbeat to communicate to the MQTT

backend we created earlier.

• Chapter 9 – This incorporates the Sense HAT device to gather data

about our environment to the Pi. The Sense HAT provides us a visual

LED display, temperature sensors, and a joystick for interactions.

• Chapter 10 – In this chapter, we add a camera to the device which will

allow us to do facial tracking and recording.

• Chapter 11 – This is one of the last chapters in which we incorporate

the video camera to send data back to the cloud as well as allowing

the Pi to receive recording commands from the cloud, and finally we

allow the Pi to be used as a HomeKit device to show temperature and

motion.

• Chapter 12 – This final short chapter discusses how we would build

an ISO image for our given application and other bundling issues.

PrefaCe

1
© Joseph Faisal Nusairat 2020
J. F. Nusairat, Rust for the IoT, https://doi.org/10.1007/978-1-4842-5860-6_1

CHAPTER 1

Introduction
The Internet of Things (IoT) is a highly encompassing term that covers everything from

your home network-connected camera to the oven that is Wi-Fi connected, all the way

to your modern electric cars like the Tesla that are always connected to the network and

almost always on. The most basic premise of IoT is a hardware device that is a connected

network appliance. In modern days, that usually means Internet and almost always

connected to a cloud service, but it can just as easily be a local area network.

Only in the last 10 years have we truly embraced the IoT model for not only offices

and factories but for everyday living. The most common consumer IoT systems are

the ones from or supported by Apple, Google, and Amazon that provide cameras,

thermostats, doorbell, and lights. All of those devices can then be used in conjunction

with each other and for home automation and control. While many of these devices

are used for fun in a home, they have beneficial application for elderly care and for

medical monitoring and even can be used in industrial and manufacturing components.

Devices in factories can report on the status of how many components are rolling off

the assembly line, if there is a failure at a point, or even throughput of a factory. Used in

conjunction with machine learning, the possibilities are endless.

And while IoT as a term didn’t make our way officially in the lexicon till 1999 by

Kevin Ashton of Procter & Gamble, the concept has been around since well before that.

What gave birth to IoT dates back to 1959 with the Egyptian-born Inventor Mohamed

M. Atalla and Korean-born Dawon Kahng while working at Bell Labs in 1959. They

created the MOSFET (metal-oxide-semiconductor field-effect transmitter) which is the

basis for the semiconductor, which revolutionized electronics from huge tubes to the

microchip components we have in our smart watches, phones, cameras, cars, and even

your ovens. It would still take another 23 years though till someone at Carnegie Mellon

decided to hook up monitoring a Coca-Cola machine for its inventory that would mark

the first true IoT device, before anyone even thought of what IoT was, and then another

10 years before companies like Microsoft and Novell really proposed usable solutions.

However, even then chips were expensive and relatively big. Today Raspberry Pi packs

way more punch than the desktops of the 1990s, especially in the GPU department.

https://doi.org/10.1007/978-1-4842-5860-6_1#DOI

2

 Who Is This Book For?
This book is for anyone from your hobbyist to someone trying to create their own

commercial IoT products. I guess for your hobbyist, there is the question of why.

Purchasing IoT applications has become inexpensive, fairly customizable, and routine;

why bother to create your own? And while one answer is simply for fun, another is

that you want to create a fully customizable solution. And finally another answer that

became even more apparent this year was ownership, that you are the sole owner.

This importance became obvious to me in two cases this year. This first was with the

Amazon-owned company Ring. They had had to let go of four employees due to privacy

concerns that they had spied on customers snooping in on their feeds. And while this is

likely the exception and not the rule, it still lends to the idea of wanting to create pipes

that are 100% solely owned by you.1 The second was Sonos, who after customers spent

years buying components found out the older products will no longer be backward

compatible, leaving many in the dark to use new software updates.2 And while it would

be hard to replicate the amount of code they write, the open source community that

integrates with custom Pi components is growing and will help to live on even if it means

you have to code it yourself.

This book is titled Rust for the IoT. Before we discuss what we are going to build, let’s

break out those two words further.

 What Is IoT?
Internet of Things, or IoT, which will be used to reference it for the rest of the book, has

become a new and ever-growing marketplace in the last few years, even though it’s been

around for decades. At its core, it’s a network of devices that communicate with each

other and often with the cloud.

The most common IoT systems are the ones from or supported by Apple, Google,

and Amazon that provide cameras, thermostats, doorbell, and lights that all interact with

each other. These devices in conjunction can be used in home automation and control.

1 www.usatoday.com/story/tech/2020/01/10/amazons-ring-fired-employees-snooping-
customers-camera-feeds/4429399002/

2 https://nakedsecurity.sophos.com/2020/01/23/sonoss-tone-deaf-legacy-product-
policy-angers-customers/

Chapter 1 IntroduCtIon

http://www.usatoday.com/story/tech/2020/01/10/amazons-ring-fired-employees-snooping-customers-camera-feeds/4429399002/
http://www.usatoday.com/story/tech/2020/01/10/amazons-ring-fired-employees-snooping-customers-camera-feeds/4429399002/
https://nakedsecurity.sophos.com/2020/01/23/sonoss-tone-deaf-legacy-product-policy-angers-customers/
https://nakedsecurity.sophos.com/2020/01/23/sonoss-tone-deaf-legacy-product-policy-angers-customers/

3

While many of these devices are used for fun in a home, they have beneficial application

for elderly care and for medical monitoring and even can be used in industrial and

manufacturing components.

In addition, IoT does not stop there; it’s gained dominance in all realms of device

use. Car companies have started adopting IoT to have a more fully connected car.

Tesla started the trend, and others have really picked it up full speed and use the same

concepts and features as your smart device. Incidentally, this is something I know quite a

bit about because I was in charge of architecting and coding Over-The-Air (OTA) updates

for one such car company.

For this book though, I am sticking to personal use in the home, since most people

into IoT are home enthusiasts and because creating one for a car is a tad more expensive

since you would need a car. But the same principles can be applied everywhere.

I have had an interest in IoT since the rudimentary RF devices you could purchase

in the 1980s from RadioShack. Quite a bit has changed since then. We are now in an age

where home automation is actually pretty good. We have cameras, devices, cloud, and

voice integration, but there are still many improvements to be made. We feel this book

could start you on your way as a hobbyist or even in a professional setting. Why Rust?

When reviewing what languages we could use for both embedded board development

and was extremely fast cloud throughput computing at a low cost, Rust kept coming up.

 IoT 10K Foot Picture
IoT at its core is the concept of connectivity, having everything interconnected with

each other; executing that is often not the most simple concept. In Figure 1-1, I have

diagramed your basic IoT interactive diagram.

Chapter 1 IntroduCtIon

4

Let’s get a few takeaways from this diagram. You will notice at the bottom there are

a few hardware devices and a mobile application. Hardware devices in our case will

be a Raspberry Pi, but they could just as easily be your Google Home Hub, Alexa, or

a car. These are all devices you are familiar with. The Raspberry Pi and Google Home

Hub in the picture serve as endpoints that can play music, capture video, or record

Figure 1-1. Showing your standard IoT diagram

Chapter 1 IntroduCtIon

5

other information about their surroundings. The mobile devices then serve a role in

communicating with those devices (in the case of the Google Home Hub, it serves a dual

role, one in communicating and the other in capturing the world around it).

The end goal as we said is to have a fully connected system, so not only do these

devices communicate with the cloud, but they receive communications back from

the cloud. The communication back from the cloud can be due to input from your

mobile application or could be a scheduled call. The pipes between represent this

communication, but you will notice we have a variety of communication paths listed.

HTTPS

This is your standard HTTPS path. These paths exist often from the device to the

cloud. Remember the endpoint in your cloud will have a static domain name like

rustfortheiot.xyz. This domain name allows a constant path for the IoT device to talk

to. The device can upload video or other large data and can download video, music,

and other media content. And it’s also available for anything that would require an

immediate request/response, for example, if we wanted to know what the forecast was

for today.

The downside to HTTPS connections is that if the server endpoints are down, if they

are overloaded, they may be slow or not responsive at all. In addition, there is data that

the device will send back that doesn’t require a response.

The hardware is the core feature the reason we even have the rest of the diagram.

These will give life to our commands. A car every time you drive is generating data on

your speed, distance, and so on. Your home devices know when you turn on the lights

and when you walk by a camera even if it’s not recording; it’s detecting the motion. For

that data, HTTP may not even work or is overkill.

Message Queue

Message queues (MQs) you have often used with any publication/subscriber system and

that in many ways are a few of the use cases we just described. If you are sending health

data of your device, periodical temperature readings, this is all pub/sub type systems.

The device wants to send the data to the cloud, but it doesn’t care where the data

eventually ends. MQs are battle tested to handle high loads and are not as often updated

as your microservice updates. This means you can easily update your microservices

without worrying about downtime of the application. In addition, if you need to take the

microservice down for an extended time, you won’t lose the data; it will receive it once it

reconnects to the message queue.

Chapter 1 IntroduCtIon

6

We will use the message queue as the intermediary for sending messages back and

then the HTTPS call from the hardware for retrieving videos. Also remember that the

calls you will be making for HTTPS will be secure connections, and the MQ calls should

be via Transport Layer Security (TLS). Now let’s jump to the cloud. You will notice a

fairly standard application layer with microservices, a database, and a bucket to store

files in. In our case, we will used a local store for saving image and video files. Two other

interesting items are the message queue (MQ) and machine learning. Machine learning

(ML) is growing and really helps with IoT devices since often they generate so much

data. We just mentioned all the data that the MQ can retrieve. This data is invaluable

in being able to use ML to generate guides, suggestions, and adaptive feedback. We

won’t dive into machine learning in this book, that will be a book in of itself. If you are

interested, you can read Practical Machine Learning with Rust (www.apress.com/us/

book/9781484251201). The microservice architecture in the backend allows you to

create a variety of small services you can scale independently of each other but can also

communicate as if they are on one endpoint (we will discuss how to do this when we

get to Chapter 7). These microservices can then talk to database, bucket stores (like S3),

or the message queue. All of that backend will process data, serve as endpoints to route

data from mobile to the device, and even send notifications either to the device or the

mobile application.

 Why Rust?
The next question that may come to mind is why did we pick Rust? If you look at most

web applications, they aren’t written in Rust; if you look at most board development, it

isn’t in Rust either. So why Rust? Rust is a multi-paradigm programming language that

focuses on performance and safety. Rust, by what it allows you to do, has quite a bit

more performance and safety implemented than other languages. The biggest way this

is shown is in Rust’s borrowing and ownership checks. Rust makes it so that there are

specific rules around when a variable is borrowed, who owns it, and for how long they

own it for. This has been the main attraction of Rust for many. The code becomes faster,

less memory intensive, and less like to have two variables access each other at the same

time. We will get into this more in the borrowing section. Stylistically, Rust is similar to

languages like Go and has C-like syntax with pointers and references. And while some of

the Rust crates lack the maturity of other languages, the language itself is continuously

enhancing and added to.

Chapter 1 IntroduCtIon

https://www.apress.com/us/book/9781484251201
https://www.apress.com/us/book/9781484251201

7

 Pre-requisites
While we are covering some Rust syntax at the end of this chapter, this is not an

introduction to Rust. And while I don’t think you need an advanced understanding

of Rust, if you are familiar with other functional or imperative languages, then you

should be able to get away with a basic understanding. However, if you don’t have that

background and have already purchased this book or are thinking of doing so not to fret,

I’d suggest one of two options:

 1. Learn Rust (www.rust-lang.org/learn) – Between reading

the online book and the examples, you can gain quite a good

understanding of book. The book is often updated and usually up

to date. It’s how I initially learned Rust.

 2. Beginning Rust book (www.apress.com/gp/book/9781484234679) –

Often it’s easier to learn through longer books that will go into

greater detail, and if that’s what you need, Beginning Rust is for you.

In addition, throughout the book we are going to cover a number of topics from

microservices, GraphQL, CQRS, Kubernetes, Docker, and more. And while I will provide

some explanations and backgrounds for each technology we introduce, there are entire

books devoted to each of those tools. If you ever feel you need to learn more, I would

suggest looking online; we will give resource links during those chapters.

 Components to Purchase
In the first half of this book, we will create a cloud application, and while we will

be deploying that application to DigitalOcean cloud services, that isn’t actually a

requirement in building everything. Even then, we are picking DigitalOcean over

services like AWS to mitigate the cost.

However, the second half of the book does deal with creating a Raspberry Pi–based

application with a few add-ons. And while you will be able to follow along with this book

without any cloud or hardware, to make the most of it, we will recommend a few cloud

pieces and hardware that is designed to integrate with the software in this book. In the

following section, I’ve given a list of hardware that you will need to purchase to fully

follow along with the book. I’ve also provided the links on Amazon, but you can get the

actual hardware from anywhere, and after some time the links may change:

Chapter 1 IntroduCtIon

http://www.rust-lang.org/learn
http://www.apress.com/gp/book/9781484234679

8

 1. Raspberry Pi 4 4 GB Starter Kit (https://amzn.com/B07V5JTMV9) –

This kit will run about $100 but will include everything we need to

get the basic Raspberry Pi up and running: from cables to connect

it to your monitor, to power cables, and even a 32 GB SD card to be

used for application and video storage. There are cheaper kits you

can buy, but the all-in-ones will be a great starting point. Note:

I selected and used the 4 for development, but if you used a 3, it

should work as well; you will just have to adjust some endpoints

when downloading OS software. The full Pi 4 kit will cost roughly

$100.

 2. Raspberry Pi Debug Cable (https://amzn.com/B00QT7LQ88) –

This is a less than $10 cable that you can use to serially connect

your Pi to your laptop without having to have a monitor, keyboard,

or SSH ready. We will use this for initial setup, but if you are

willing to hook your keyboard and monitor directly, it’s not

necessary.

 3. Sense HAT (https://amzn.com/B014HDG74S) – The Sense HAT is

an all-in-one unit that sits on all the Pi’s GPIO pins that provides

an 8 x 8 LED matrix display as well as numerous accelerometer,

gyroscope, pressure, humidity, temperature sensors, and a

joystick. We will be making use of the temperature, LED, and

joystick later in this book. But this HAT provides quite a bit for $35.

 4. Raspberry Pi Camera Module with 15 Pin Ribbon (https://

amzn.com/B07JPLV5K1) – The camera we will be using is a $10

simple camera that is connected by ribbon to the Raspberry Pi.

Since we are using this for simple video and face detection, the

camera can be fairly basic, but it’s up to you how much you want

to spend on it.

While I have given you Amazon links to purchase everything, you are free to

purchase from any supplier; it’s all the same. This was just for ease of use.

We will cover and use all these components throughout the book.

Chapter 1 IntroduCtIon

https://amzn.com/B07V5JTMV9
https://amzn.com/B00QT7LQ88
https://amzn.com/B014HDG74S
https://amzn.com/B07JPLV5K1
https://amzn.com/B07JPLV5K1

9

 Goals
The main goal of this book is to create a complete IoT application from the device all the

way to the backend and all the parts in between. Without taking too many shortcuts, we

will be using practices and techniques that are used for larger-scale applications. The

goal is to give you all the lessons needed should you wish to expand your IoT application.

What we will actually be building is a HomeKit-enabled video recording device that

stores and parses for metadata video and image files to the cloud and allow downloading

and commenting on those videos. Here are the details:

Raspberry Pi – Allow a user to authenticate so that we know which Pi the files originate

from. Allow the user to click a button on the Pi to see the temperature. Record video with

facial recognition storing the video and image captures and sending the data to the cloud.

Cloud – Allow downloading and uploading of video and image files. Parse video and

image files for metadata content. Create endpoints in the backend for users to create

comments and query comments for the video files.

To perform all these features, we will use dozens of rust crates all working together

to create a seamless system. We will create an application using a variety of tools like

GraphQL, OpenCV, and eventual consistency (EC), all words that will become more

clear as we go on. I will say what I am writing is not anything you couldn’t figure out

yourself if you know what to look for. Most of this information is available online, if you

dig far enough, but it’s sometimes hard to pick the right crates and get them to work

together, and we’ve spent countless hours researching for our own work and for the book

to bring it together. And in many instances, I’ve forked crates to either upgrade them for

our use or to provide customizations we need. The code for the book will cover in more

detail the following techniques:

 1. Server side

 a. Creating a deployable set of microservices

 b. Server application that exposes GraphQL endpoints

 c. Server application that uploads and downloads files

 d. Communicating with hardware securely via MQTT

 e. Creating and using certificates

 f. Creating Docker, Helm, and Kubernetes scripts to deploy the application

Chapter 1 IntroduCtIon

10

 2. Hardware side

 a. Setting up a Raspberry Pi

 b. Adding peripherals to the development board/Raspberry Pi

 c. Interacting with HomeKit

 d. Capturing video data

 i. Performing OpenCV on the video

 ii. Recording and uploading video content

 iii. Using SQLite to have a resilient store of data

Before we start coding, we are going to discuss the server and hardware side more.

 Source Code
All of the source code for this book will be located on my GitHub page at http://

github.com/nusairat/rustfortheiot.

This will include the services for the cloud, the applications for the Raspberry Pi,

and the necessary build-and-deploy docker files. While I do step you through most of

the code in the book, some of the more repetitive items like arguments for variables I

only show you once to apply to your other services/applications. If you have any issues,

please create an issue or you can tweet me at @nusairat. Now of course be aware that as

the years go on, there could be compilation issues due to the version of Rust that is the

current version. As of the time of finishing this book, the version of Rust is 1.43.1.

 Web Application
The first half of the book will be on the server side. On that side, we will create a

multitude of endpoints and tools that work with each other. The following is what we are

going to make:

 1. Microservices

 a. Upload/download service

 b. Retrieval service

 c. MQ service

Chapter 1 IntroduCtIon

http://github.com/nusairat/rustfortheiot
http://github.com/nusairat/rustfortheiot

11

 2. Postgres database

 3. Eventstore database

 4. Message queue

All of those services will become more clear later. The first backend server we are

going to design is going to serve a multitude of purposes, but essentially act as a bridge

between your IoT device and the cloud. This will allow us a multiple of flexible options

that you may not get with having a stand-alone IoT application and certainly is the way

that most home devices work these days:

 1. Act as a remote storage. When recording video or images from

your IoT device, we will store it locally on the IoT device initially.

However, this is not ideal if we want to retrieve the data from a

remote client device; the round trip would be extremely slow.

In that case, the application would have to call a server, and the

server would then have to call the IoT device and start the transfer

of data. While this is fine for real- time live video, if you are trying

to view lots of historical archives, the slow download speed would

become uncomfortably noticeable. In addition, it’s great to have

offsite storage of the data to serve as backup for your application.

Most cloud providers will provide fairly cheap storage for large

data; they just charge you for access to the data. As long as you

aren’t constantly accessing the data, you are fine moneywise.

Our cloud application will be able to store to the local file store of

the server it’s on as well as to cloud storage services like S3. The

reason for this will become apparent later, but this will allow us

to run one of the upload services locally from a Raspberry Pi (or

other server) co-located in your house and to the cloud. This can

help lower costs for storage and servers and is common in any do-

it-yourself system.

 2. Another issue we want to tackle is sending commands to the IoT

device. Mobile devices allow you to send commands to your home

units through the backend. In our application, we are going to allow

recording start and stop commands to be sent via a RESTful

endpoint to the backend that will control whether the Pi records

or not.

Chapter 1 IntroduCtIon

12

 3. Querying of data. As you store more and more files, images, and

video, you are going to want to add tags to these uploads but also

search for them, not only custom tags but the metadata associated

with the files. Images and video often have metadata created and

stored with them. These can include things like location, time,

aperture and other settings (for video/camera), quality rate, and so

on. These are all services the user will want to search for. We will

parse the video and image files and store their metadata for use later.

 Board Application
When we first started thinking of what we wanted to use with Rust, the board is what

attracted us the most. With the board, there are many options from your Raspberry Pi

to a more advanced iMX.8 board, which we initially thought of going for, but then the

Raspberry Pi 4 came out. The 4 is an extremely powerful and advanced board, and it is

not only a hobbyist board of choice but is often used in the real world. In the real world,

before you’ve created your custom chipset, design, and others for your hardware piece,

the Pi can serve a short-term prototyping tool that your engineers can work on while

waiting for revisions of the production board. Raspberry Pis are the hobbyist choice

because of their cost, size, and ability. There are a few ways of creating IoT solutions,

and companies employ a variety of solutions. You have anywhere that range from

relatively dumb devices that do one thing like take record temperature and send it back

to a common device (think of Ecobee’s thermostat sensors) to a more encompassing

device that has speakers and cameras like a a smart doorbell, or even more advance

that has monitors, sensors, and so on. With the Pi, our options are a bit more limitless

since we can attach whatever sensors we want to the Pi. In addition for something that

is just recording temperature, you could go down to a cheaper Pi Zero. All of this will be

future options for your components; for now, we are sticking with one Pi that has all the

components attached to itself.

With this setup, we are going to be able to record video via attached camera, have

display interactions, and show the temperature. The purpose is to give you a powerful

starting point for creating your own applications. You will interact with the GPIO and

the camera port and learn how to build and deploy applications to the board. One of

the biggest hurdles will be how to run multiple processes at once in Rust on the board to

perform heartbeats, face monitoring, and receive input.

Chapter 1 IntroduCtIon

13

The set of applications we will build for the board are as follows:

 1. Face recognition video recording

 a. Background uploading of video

 2. Communicate with MQTT

 a. Send heartbeat

 b. Receive recording commands

 3. LED display

 a. Display pictures for holidays

 b. Display device code for authentication

 c. Display temperature

 4. Homekit integration

 a. Display temperature

 b. Display motion detection

 Basic Rust
While I mentioned a few other resources for learning Rust, I feel I’d be remiss if I did

not at least cover a basic introduction and touched on topics and language syntax that

you will see throughout the book. As software developers, and especially modern-day

software developers, switching languages is part of our everyday job; as a community,

we keep evolving to solve new problems. In this final section of Chapter 1, we are going

to discuss the Rust language, its syntax, and its features and go over some code samples

which will help you understand the language. If you already are comfortable with Rust,

you can skip this section and start Chapter 2; if not, read on.

 Rust Origins
Rust is not a new language but rather has been around since 2008 but until recently

got popular in the main stream. It was started by and still the biggest contributors

to it are Mozilla. It was mainly used as a language for the Mozilla browser engine.

Rust syntactically is like C/C++ with the standard curly brackets and language syntax.

Chapter 1 IntroduCtIon

14

However, it is not the class-based inheritance-type language you find with C/C++ or Java;

instead, it’s a very functional language. The main focus of rust was speed and memory

safety. And it exceeds in both; it is extremely fast beating, even Golang in many tests as

well as C and C++. Memory management like we discussed earlier is very competent

without you having to micromanage the application. So what are the places to use Rust?

Well, here are four significant areas for Rust.

 Command Line

Rust has great support for command-line tools and can run quickly and start up fast.

There are tools to make it easily distributable as a binary to others (we will be creating

these later). You can also create a robust set of configurations to make it work in multiple

environments, have first world logging, and can talk to about any set of data points. The

final item, the data points, makes it very good as a cloud-based middleman service. If

you need a service that monitors webhooks, databases, and message queues, it can serve

in a low CPU/memory pod funneling and processing data between other systems all the

while not exposing NodePorts or easily attack vectors into the pod.

 Modules

For existing or even for more full-featured applications, there are often slow components

or performance critical components for it. Rust can be used in many languages to perform

high-throughput processing of data, JSON, and so on. WebAssembly is a commonly used

for this to create performance critical JavaScript and wrapped in a module.

 Microservices

While not traditionally designed for web applications, microservice architecture is a

great use of Rust. This often fills the same space that Golang and other languages try

to create. Rust’s speed and memory management lends it well to microservices that

are accessed repeatedly but where you may fear memory growing out of control. Much

like Golang, Rust can use Docker scratch containers (more on this later) that will allow

you to deploy an application with low memory footprint. This, for anyone deploying to

the cloud, will save money in the long run; this is one of the biggest reasons shops are

switching from the traditional JVM model to the scratch container model.

Chapter 1 IntroduCtIon

15

 Embedded

Embedded is where the biggest need for a next-generation language really relies.

For decades now, C and C++ have been the language of choice for embedded designs.

Because of this, there are already many libraries written in C for working with embedded

systems. To help this, there is some shared interoperability between the languages,

including Rust containing C-type data structures that can be used in your code. We will

go over these later in the chapter. The two biggest reasons is that it’s compiled down, so

it can be run without an interpreter, and its memory-safe by writing your own memory

allocation and deallocation. However, Rust really helps to solve both problems; it’s

compiled to byte code, and the memory management has rules that it forces you to

live by making the memory allocation predictable and repeatable. Rust also makes it

impossible to perform accidental concurrency.

So of those four areas, we will cover in this book the command line, microservices,

and embedded.

 Learning Rust
This book at its heart is not a “learning rust” book; it is more a book on systems

engineering of an IoT system with Rust. You will need to know at least some Rust to

understand the examples. If you haven’t learned it yet, there are many great resources

to learn the Rust language. Probably the easiest and best is the Rust Programming

Language written by Nicholas Matsakis and Aaron Turon; it’s an online book you can

download and use (https://doc.rust-lang.org/book/index.html). Or if you want

more details, Carlo Milanesi has Beginning Rust: From Novice to Professional that is also

useful. I’ve also read the Rust in Action MEAP, and that book goes into some very deep

concepts and base coding that can be fascinating as well, but I don’t think it’s necessarily

a book for beginners.

Now this being said, if you are like us, picked up the book and wanted to dive in as

fast as you can, then this next part is for you. We will go over many of the basic concepts

of Rust and the syntax and rules for the language including many of the features we are

going to use in the book. This section is obviously much shorter than a book or a site

dedicated but should help you at least get your feet wet enough to be able to read many

of these examples of the book. This is far from comprehensive but should get you going

enough to be dangerous.

Chapter 1 IntroduCtIon

https://doc.rust-lang.org/book/index.html

16

Let us dive in with what the most basic Rust application looks like, and we can build

up the application from there. So let’s start with the traditional Hello World application.

 Installing Rust
First up in order to use Rust, you will have to install rust. While this seems

straightforward, my experience has been it is not as straightforward as it usually is. Often

when I am installing a new application (and note I am on a Mac), I just go to Homebrew

and install the new tool set, be it Clojure, Python, Golang, or Elixir. With Rust, you don’t

necessarily want to go that route.

Do not use Homebrew to install Rust directly.

What you want to install is rustup; this is the system installer for Rust. Part of the

reason for this is you do not want to install just Rust, you are going to want to install a

few other items that will make your life easier:

Cargo – This is the package manager for Rust we will be using

throughout the book and our examples to run Rust applications.

RLS (Rust Language Server) – While you can run Rust from the

command line without RLS, you will want RLS if you plan to use

VS Code and other editors. RLS will allow rust to compile and run

from your editors.

There are two ways to install rustup; there is a Homebrew script you can install

called rustup-init that then runs the rustup initializer. I do NOT recommend this way.

It really doesn’t buy you anything. Most direct is in Listing 1-1 where we run the curl

command at https://rustup.rs/: curl https://sh.rustup.rs -sSf | sh. This will

install Rust and Cargo for you. Once installed, you can run rustup -V to make sure you

have it properly installed; it should have a version of at least 1.16 or higher.

Listing 1-1. Installing rustup

➜ curl https://sh.rustup.rs -sSf | sh

➜ rustup-V

rustup 1.16.0 (beab5ac2b 2018- 12- 06)

➜ cargo -V

cargo 1.34.0-nightly (4e74e2fc0 2019-02-02)

Now that you have Rust installed, we can move on and start coding in Rust.

Chapter 1 IntroduCtIon

https://rustup.rs/
https://sh.rustup.rs

17

 Hello World
We shall start our tutorial with the quintessential example that every software book will

have (or at least some variation of it). Listing 1-2 shows the Hello World example.

Listing 1-2. main.rs, the most basic application

fn main() {

 println!("Hello, world!");

}

The first thing you may notice is the file extension; we use an .rs extension for our

Rust language files. The next thing you notice is the function definition fn main(); every

application you create will start with a main function in a file called main.rs. In addition,

you will notice the semicolon at the end; this is required (kind of, but we will get into that

later). Also what is called the println! is actually a call to a macro, not a function. This is

your most basic method that you can create and run, printing out Hello World. For most

of our applications, we will compile via cargo since we will be relying on dependencies

and multiple file interactions. However, for one file, we can use rustc, the rust compiler

to build and execute the application. When you compile with rustc, it will create a

binary file that can be then run without any interpreter or other system files.

Listing 1-3. Commands to compile and run the application

➜ rustc main.rs

➜ ./main

Hello, world!

OK, so now that we have the customary introduction to every language, let’s start

diving into doing things more than println.

 Writing in Rust
A theme you will see in this book and in general talking about Rust is that it has C/C++-

like syntax and the memory management, so consequently those are the two major

things we will be discussing and showing. Much of this chapter is showing you the syntax

and the features; for those of you who want to dive all in to Rust, let’s get to it.

Chapter 1 IntroduCtIon

18

 Variables and Data Types
We showed the most basic Hello World example; now let’s in Listing 1-4 show the basics

of programming: creating variables and setting them to particular data types. Creating a

variable in Rust is extremely simple; all you need to do is use the keyword let followed

by the variable name set equal to a value.

Listing 1-4. Setting values three different ways

let a = 3;

let b = 'J';

let c = "Joseph";

This is about as simple declaration as you can get. Each line creates a variable,

setting it to a different type:

 1. The first line is setting a to the number 3; by default, this will be set

to a medium size number type of u32 (more about that in a bit).

 2. The second line should be familiar to most; the single line denotes

setting a char.

 3. Finally, the third line is setting what looks to be a String, like we

have in most languages. This however is not; it is what’s called a

string slice. And in fact, it has a static lifetime, which when you

think about, makes sense since we have hard-coded the string on

the right; it isn’t a variable that will get changed.

Tip It will be important to understand the difference between string slices and
Strings and when to use each.

While this is an acceptable way of creating variables, the preferred way is to define

the type when creating the variable like we have in Listing 1-5. This is more readable

for anyone coming into the application; in addition, it will help your IDE in performing

code completion. Rust and many dynamic languages are interesting in their ability to

allow optionals, but generally it’s best to define it. Also with types, you can define your

variables without initializing them (you can’t do that without a type since it would have

no clue what type to create).

Chapter 1 IntroduCtIon

19

Listing 1-5. Setting values three different ways with types

let v :u32 = 3;

let x :char = 'J';

let y :&str = "Joseph";

let z :i64;

The previous listings all follow with the corresponding types; I added a fourth one

showing how you could create a blank variable. However, the way it’s currently written is

rather useless since you can’t set any of these values once initialized. If you are familiar

with other languages like Java, they wrap various number types in things like integer,

double, and float which require you to then remember their size. In Rust, as you can

see, it’s more upfront so that you have an idea of the amount of bits you are allocating for

the data type. One other difference is every type can have a signed and unsigned version;

this lets you allocate smaller sizes for bigger numbers if you do not need the negative

versions. I’ve marked here the various types you can use as well as a C++ and Java

equivalent to help if you are coming from either language.

Type Signed Unsigned C++ Equivalent Java Equivalent

8-bit i8 u8 int8_t/unit8_t byte

16-bit i16 u16 short int short

32-bit i32 u32 int/float int

64-bit i64 u64 double/long double long/double

128-bit i128 u128 custom BigInteger

arch n/a n/a isize usize

Note: The 8-bit one in C++ is an unsigned char.

Changing the Variable

In order to mark a variable that we want to change, in Listing 1-6 we have to apply the

mut before the variable and then we can set it.

Chapter 1 IntroduCtIon

20

Listing 1-6. Mutation example

let mut x = 3; ①
x = 5;

let mut y :i32; ②
y = 25;

let mut z :i32 = 3; ③
z = 2;
println!("X : {} / Y: {} / Z: {}",x ,y, z);

 ➀ Changing a value of a variable you have set.

 ➁ Changing a value of a variable you have not set; in this case, you

HAVE to set the type.

 ➂ Changing a value of a variable whose type has also been set.

Changing Value That You Have Passed In

There are also other types you can define and use. In Listing 1-7 we have examples of

those types.

Other types are as follows:

Type Sample

bool true/false

char 'a'/'😻','u+10FFFF'

array

slice

str

tuple (i32, f64)

Listing 1-7. Example of using a variety of types

let x :bool = true;
let y: char = '\u{00e9}';
let z: char = 'a';
let a: char = '😻';
println!("Extra Chars: {} , {}, {}, {} ", x, y, z, a);

Chapter 1 IntroduCtIon

21

 Borrowing and Ownership
We mentioned the borrowing and ownership earlier, and this is one of the keys to the

Rust language. And honestly, this will be the hardest part to wrap your head around

when coming from other languages that have very loose borrowing rules. When you

first start writing Rust code, you will probably get quite a bit of borrow checker errors on

compilation; this is normal, and the more advance of a feature, the better it will be. I still

get the same problems, albeit it’s usually due to the library I am using.

But let’s go over two quick examples, one where we reassign a variable and one that

doesn’t work. In Listing 1-8, we set a variable and then reset it to another variable.

Listing 1-8. Setting a variable and then changing the contents to another variable

let zed = "4";

let me = zed;

println!("Zed : {}", zed);

This will compile and run and print “Zed : 4”. Let’s try this again, but this time in

Listing 1-9, we will use a struct.

Listing 1-9. Setting a variable and then changing the contents to another

variable but with a struct

#[derive(Debug)]

struct Number {

 num: i32

}

fn run() {

 let n = Number { num : 25i32};

 let mv = n;

 println!("Number : {:?}", n);

}

This is basically doing the same thing as the previous, but this one will fail with a

“value borrowed here after move” for the println. Why is this? Let’s break down what’s

happening. On the first line of the method, n is initialing the Number to a section of

memory. On the second line, that memory is now pointed to mv instead of n. Since only

Chapter 1 IntroduCtIon

22

one section of memory has a variable pointed to it, n now has nothing pointed. This

makes sense but begs the question why did the first set of code work, but this code fail.

That is because in the first set it was actually performing a copy of the memory instead.

Thus, zed and me were both pointing to different memory both holding “4”. We can

actually do the same with the second example by adding Copy and Clone to the derive;

this will allow the compiler to automatically have in the second reference to perform a

copy task instead. You will see that the borrowing and reference are all done via compiler

optimization as well, making it much faster.

In addition, the same concepts apply when passing a variable to a method. When

passing a variable to a method, we let the method borrow the variable, and won’t be

able to use is it after the method returns, since the method has taken ownership of the

variable and is now considered the final owner. In Listing 1-10, we borrow passing a u32;

as you can see, this works because it performs a copy.

Listing 1-10. Passing a u32 to a method

fn create() {

 let x :u32 = 3;

 copy_var_to_method(x);

 println!("X :: {}", x);

}

fn copy_var_to_method(x :u32) {

 println!("x: {}", x);

}

However, much like the previous example in Listing 1-11, a String which does not

implement Copy tries to perform the same sequence, but it would fail (hence, why I have

the println commented out).

Listing 1-11. Passing a String to a method

fn create_str() {

 let x :String = String::from("Joseph");

 take_ownership_str(x);

 //println!("This would fail : {} ", x);

}

Chapter 1 IntroduCtIon

23

fn take_ownership_str(y :String) {

 println!("x: {}", y);

}

However, just because we pass the ownership to a function, it doesn’t mean we can’t

pass the ownership back to the calling function. In Listing 1-12, we pass the ownership to

the function and then return it back to the same variable.

Listing 1-12. Passing ownership to a method and then returning it

fn create_str_and_move() {

 let mut x :String = String::from("Joseph");

 x = take_ownership_str_and_return(x);

 println!("End of method : {} ", x);

}

fn take_ownership_str_and_return(y :String) -> String {

 println!("x: {}", y);

 y

}

Note you do have to make the variable mutable to set it; if not, you would have

received a “cannot assign twice to immutable variable” had you tried to reassign x.

 Memory

When talking about borrowing, it’s also useful to talk about the lifetime of the memory

associated with it. Memory in any system is finite, and if you’ve ever worked with a large

or heavy use application, you’ve probably run into some memory issues. Much of this is

simply because the way other systems handle memory isn’t optimal. When we talk about

C, we would use alloc and dealloc to allocate and deallocate the memory accordingly.

This is a manual process, but gives the developer great flexibility in controlling memory

usage. However, I’ve seen quite a few times this also leads to memory leaks due to

programmer error. Java decided to take this out of the programmer’s hand and used

garbage collection to clean up memory. Periodically, Java will run a garbage collector

to free up what it considers memory no longer in use. This works great most of the time;

however, this gives the developer no ability to control memory cleanup and in heavy use

or an application creating quite a bit of objects no ability to control its cleanup.

Chapter 1 IntroduCtIon

24

Rust, as we said, uses borrowing to know when the memory is being created and also

when it no longer has owner to it (like when you pass a variable to a method and then

return from the method). Therefore, Rust at compile time can control when memory is

allocated and when it’s deallocated by using the rules of its borrowing and ownership

to know when a variable is no longer have an active pointer to it. To that avail, you

can see this happen if you implement the destructor on a struct. Destructors work by

implementing the Drop trait. In Listing 1-13, I implement the Drop trait for a person.

Listing 1-13. Implementing the Drop trait for Person

#[derive(Debug)]

struct Person {

 name: String

}

fn run_outofscope() {

 let p = Person { name: "Joseph".to_string()}; ②
 move_memory(p);

 println!("Finished");

}

fn move_memory(p: Person) {

 println!("Person: {:?}", p); ③
}

impl Drop for Person { ①
 fn drop(&mut self) {

 println!("Dropping!"); ④
 }

}

 ➀ Implement Drop trait on Person.

 ➁ Instantiate a Person and create the memory for it.

 ➂ At this point, the variable will go out of memory.

 ➃ Destructor is called.

Chapter 1 IntroduCtIon

25

If you run this set of code, you will get this:

Person: Person { name: "Joseph" }

Dropping!

Finished

As you can see, the destructor gets called once we return from the function. Since

most of Rust’s memory is by default allocated to the stack as well, the memory space is

now free to be used by any other item initialized down the chain.

 Reference and Dereferencing

Instead of passing variables for complete ownership transfer, we can send references

of the variable to the function. This allows us to still use the variable when the method

is complete. When you do pass a variable though and want to alter it, you will have

to dereference the variable to set the memory. In Listing 1-14, we have an example of

passing a mutable reference and then dereferencing it.

Listing 1-14. Passing the variable as a reference and dereferencing it to get set

pub fn run() {

 let mut x = 5i32;

 println!("1 > {:?}", x);

 alter(&mut x);

 println!("2 > {:?}", x);

}

fn alter(x : &mut i32) {

 *x = 3i32;

}

 Traits
Most of the Rust we have discussed are fairly common features between languages (most

languages have concepts of methods or functions and variables). Traits are very different

and are how we create abstraction in Rust. Traits are abstraction layers that work on

structs to add functionality to yours or to existing structs within the framework. We

will see in the chapters to come they are used extensively to create functionality for

existing middleware.

Chapter 1 IntroduCtIon

26

Let’s start in Listing 1-15 with an existing struct that has an implementation with it.

Listing 1-15. A Person struct and its optional implementation

pub struct Person {

 pub name: &'static str,

 pub address: &'static str

 //pub extensions: TypeMap,

}

// pub is implied and not needed here

impl Person {

 //fn address

 pub fn say_hello(&self) -> String {

 format!("Hello {}", self.name)

 }

}

Here we have a struct of People, containing a name and address, and even have an

implementation to add a say_hello() call to the struct. Now let’s get into traits; the

trait is going to define certain abstractions for your struct; the nice thing about traits is

they can be applied to more than one struct; you will just have to implement them for

each. So in Listing 1-16, we define a trait of students.

Listing 1-16. A student trait

pub trait Student {

 // sets the name

 fn new(name: &'static str) -> Self;

 // gets the name

 fn name(&self) -> &'static str;

 // enrolls in the class

 fn enroll(&self, class: &'static str) -> bool;

}

Chapter 1 IntroduCtIon

27

The trait defines functions needed for it, but not the implementations, although

we could define an implementation there if we need to, but that is not the usual case.

Finally, let’s attribute the trait Person to the Student in Listing 1-17.

Listing 1-17. Implement student on the person

impl Student for Person { ①
 fn new(name: &'static str) -> Person {

 Person { name: name, address: "" }

 } ②

 // gets the name

 fn name(&self) -> &'static str {

 self.name

 } ③

 // enrolls in the class

 fn enroll(&self, class: &'static str) -> bool {

 println!("Enroll the student in {}", class);

 true

 }

}

 ➀ The syntax to say the implementation of trait Student for Person.

 ➁ A new to construct the trait. This is optional.

 ➂ Finally, one of the methods used.

At this point, you have your trait, and person has been implemented for the trait; all

that’s left in Listing 1-18 is to instantiate and use it.

Listing 1-18. Instantiate and use the trait

use super::people::Student;

// have to include all the fields

let mut p: Person = Student::new("joseph");

println!("Person W/Trait:: {}", p.name);

p.enroll("CS 200");

Chapter 1 IntroduCtIon

28

You will actually instantiate the structure using the trait itself. This is optional, but

then it allows the compiler to know that we have Person with a Student trait attached.

Thus, any other functions you pass it to would not know those methods were allowed.

This leads us to the other case of using traits; what if we have a trait on an existing struct

but want to use the trait in our function? In Listing 1-19 we look at that use case.

Listing 1-19. Using a trait without instantiating it on a struct

mod run2 {

 use super::people::Person;

 use super::people::Student; ①

 pub fn run(person: Person) {

 person.enroll("CS 200");

 }

}

 ➀ Adding this line in your module allowed the compiler now is required

in this case.

The addition of the Student along with the Person allows the compiler to know the

Person will have Student functions as well; this is what allows us to add traits to structs

that we didn’t create in our application.

 Typemap

One quick final topic about traits, if you noticed we could add different traits to one

struct, but since they are only allowed to define functions, it’s hard to add any extra data

functionality to separate the traits out. You can only work with the data, and you really

don’t want to add data fields for one that you don’t use for the other. For example, a

student trait may have classes, advisor, and so on. And a faculty trait could have classes

taught and so on. One useful way around this limitation is with TypeMap (https://

github.com/reem/rust-typemap). TypeMap allows us to store key/values in a tuple that

are tied to a struct and then look them up that way accordingly. In Listing 1-20 we have

an example of using the TypeMap.

Chapter 1 IntroduCtIon

https://github.com/reem/rust-typemap
https://github.com/reem/rust-typemap

29

Listing 1-20. Typemap example

use typemap::{TypeMap, Key};

struct KeyType;

#[derive(Debug, PartialEq)]

struct Value(i32);

impl Key for KeyType { type Value = Value; }

#[test] fn test_pairing() {

 let mut map = TypeMap::new();

 map.insert::<KeyType>(Value(42));

 assert_eq!(*map.get::<KeyType>().unwrap(), Value(42));

}

We will use this later with the iron framework to add middleware data to Requests.

In addition, there are a few other features using Arc<Mutex<> and the async/await

pattern that we will dive into in later chapters when we actually need to use them.

 Cargo
Compiling and running code is obviously a must have for any code written, and while

we can always compile and run applications from the command line with the language

compiler, eventually (usually early on) a package manager (or 8 if you are Java) comes

out. Rust is no exception to that of course, and hence we have Cargo. Cargo is the default

package manager used by Rust and for Rust projects and in all the coming chapters is

what we are going to be using to run our examples and applications. Luckily, Cargo is

distributed with by default so we do not have to take any extra steps to get it working.

Cargo will set up a fairly straightforward directory structure for you; you will have a

src folder and inside a main.rs with a fn main method. This will be the default entry

point into the application. There a few commands we can use to run it:

• cargo run – Runs the binary or the source application

• cargo test – Runs all the tests in the application

• cargo doc – Creates the documentation from the application using

the commenting

Chapter 1 IntroduCtIon

30

• cargo bench – Benchmarks the package

• cargo build – Builds the application into an executable

The two commands you will use the most are run and test. The build you will

normally run when performing a release, so that will occur when you run cargo

build --release. There are also third-party extensions to add more functionality to

your cargo releases. You can find a various amount here: https://github.com/rust-

lang/cargo/wiki/Third-party-cargo-subcommands.

 Feature Flags

Feature flags are a way of activating code at compile time or runtime based on a given

feature. We will use this when importing crates in the application. With feature flags,

you may want to activate certain set of code vs. other sets. For example, inside the ORM

we will be using for the database, you could use different versions of the UUID crate.

This is quite common in Rust. Feature flags are first defined in your Cargo.toml file and

then activated at compile time in your code by encapsulating the method, block, and

module with #[cfg(feature = "feature-name")] that would then activate that set

of code when the feature-name is supplied. I wanted to mention them because while

I won’t actively be using them in the chapters, I will be using them in the source code.

Most of our code builds up on itself as we go along either by adding new services or new

modules. However, there are many instances that as we progress from chapter to chapter,

we have to change a method signature or drastically update. In these instances, I have

added feature flags to the code that accompanies this book. The flag full will always be

for the final book, but often I use ch05 to compile the code for that specific chapter. The

README.md for each module will tell you which flags are supported for that application; of

course, you can also look at the Cargo.toml to find out as well.

 Creating a Release

One of those extensions is a cargo-release that adds extra functionality to the cargo build

release process. You can install the cargo-release plug-in with the command cargo

install cargo-release; the only requirement is your project needs to be managed by git:

 1. It first will check that the current working directory is git clean;

now this usually won’t affect you since releases should be

performed on a build system, but it’s useful to know you do not

have any outstanding commits before creating a release.

Chapter 1 IntroduCtIon

https://github.com/rust-lang/cargo/wiki/Third-party-cargo-subcommands
https://github.com/rust-lang/cargo/wiki/Third-party-cargo-subcommands

31

 2. It bumps the release level if set. This one is a bit more complicated,

in that there are different rules based on the level you are releasing,

and has to do with the version you set in your Cargo.toml. If you had

marked it as pre-release (i.e., 0.1.0-pre), it will simply remove the

pre. If the level is a patch and there is no pre-release associated with

it, then it will bump the minor version. If the level is minor, it will

bump the minor (i.e., 0.1.0-pre to 0.2.0), and if the level is major, it

will bump the major version (0.1.0 to 1.0.0). You can also use alpha,

beta, and rc for levels as well. We will use this for our application on

the hardware being released, but won’t be using it for.

 3. Run cargo publish if you want to publish this project; this is

useful for crates you are creating for public consumption.

 4. It generates the rustdoc and pushes to gh-pages (optionally);

again this is good for a projection that is for a public crate hosted

on github.

 5. It generates a git tag with the number of the version; this is

required so that you can easily see the source code associated with

a given release.

 6. In the main, it will then bump the version for the next

development cycle.

 7. Finally, it pushes these changes, the bump and the tag, to git.

 Summary
In the introduction, we presented the requirements and goals of the book and described

the applications we will be creating for it. We also covered some topics related to web

and board applications as well as ran through some basic Rust language tutorials. In the

next chapter, we will start coding our first microservice.

Chapter 1 IntroduCtIon

33
© Joseph Faisal Nusairat 2020
J. F. Nusairat, Rust for the IoT, https://doi.org/10.1007/978-1-4842-5860-6_2

CHAPTER 2

Server Side
In the previous chapter, we went through the basics of the Rust language. This was of

course not a complete course in the Rust language; there are entire books for that, but

I hope for those that are not familiar with Rust, it at least gives you the basics to follow

along with the coding samples in this chapter. We also started to go over the goals of this

book; this will be our first chapter diving in writing code for our eventual completion of

that goal and a creation of a full-service IoT application.

The next few chapters will build up on another to create the web application portion

of the IoT application. We will be working on this to deploy to the cloud, but really could

be deployed to your local server, a Raspberry Pi server or whatever you want. And we

will look at different ways to deploy the application later. Part of what makes this chapter

difficult is we will be connecting all the moving parts together. We won’t dive into

complex business logic so as we can focus on the architecture and frameworks needed to

put the application together.

We will be building upon this application for the next couple chapters; much of it will

remain the same, others we will add and update to. The one thing to understand before

we dive in is the state of Rust and the web applications. Rust was not initially designed

to do full web-blown features; as such, some of the libraries are either not maintained or

very transient. Right now, much of the focus is on threading that many of these libraries

will benefit from when completed. However, do not take that as a reason to not use Rust.

Its design is actually very good for the Web and can cover the same spectrum that Golang

applications use. But because of this, some of the topics that we cover here, the exact

library may be different a year or two.

https://doi.org/10.1007/978-1-4842-5860-6_2#DOI

34

 Goals
After this chapter is complete, we will have the following steps complete:

 1. Retrieval service microservice.

 2. Learned and implemented Iron web framework.

 3. Created custom middleware for Iron.

 4. Set up the database we are going to use and integrate the

microservice with it.

 Microservice Architecture
If you’ve been developing for a while or coded at a more traditional shop, you might be

used to the traditional monolithic application model. Monolithic applications create one

application that covers all the requirements for the site. This application would contain

everything – your website and generated/stored HTML – run your backend services,

and manage the database connectivity. The application would be ALL of your site. Then

the nature of the web and mobile applications changed everything. Backend services

needed to serve both web and mobile content. In addition, we started using a more MVC

architecture for websites via tools like React. This meant backend servers were no longer

generation HTML but generation JSON content that can then be shared by mobile and

Web. This cut back on the size of the application server, but it was still fairly large.

There are upsides and downsides to the monolithic application model. Upsides

are that you have one application to manage, one docker image to manage, and when

QA tests the application, they have much better guarantees what they are testing is

what’s fully going to be deployed. However, monolithic applications are difficult to

sync deployments among many teams since you have to coordinate deployments. Also

a failure in one part of the application that crashes will crash the entire application.

Coordination on the deployment of the monolithic app goes beyond just the application

but database rollout since generally one application points to one database with

multiple schemas or structures. Microservices help address all these needs and more.

Microservices divide up your application by service areas. Then each service area

has its own database. This decoupling then treats each service as its own application.

Microservices can then communicate with each other over TLS so that you aren’t losing

cross-service communication. The biggest downside that might come to mind is what

Chapter 2 Server Side

35

about the endpoint from the outside. If it’s different applications, are they different

endpoints? The answer is no; you can use a variety of techniques from ingress controllers

(we will cover in Chapter 7), or if you are using GraphQL, you can perform schema

stitching to create a seamless endpoint.

 Why Microservices?
Oftentimes when I’m off to teach classes or give presentations, you get push back in the

software world that we are creating complexity for the sake of being complex; software

developers do tend to like the shiny new object. But much of that is because the question

of what we are trying to solve keeps changing due to consumer demand and technology

availability (by way of iPhones, Alexa, Google Home, etc.).

Microservices can work in any environment, but they are truly suited for a cloud high

availability site. Your traditional corporate internal application, let’s say an application

for insurance companies to sell insurance over the phone. They have a fixed set of users

(those they hired to answer the phones) and a set schedule that they know, and often

they are using the full application in their daily routines (searching, quoting, binding),

albeit binding may happen less often than the other two. And most importantly, you are

running and deploying from your own internal servers that you’ve had for years.

Now take an external application you are launching for the first time. This application has

a registration and searching, and you can purchase goods from it. Traffic here is not always

known, but a few things can happen. When you launch the application, you often get a spike

of registrations at the beginning and then it slowly goes down, or a spike if the site gets lots

of press. Also if you are selling goods, around the holidays, you will have sales and specials

and get higher checkouts than you would during the rest of the year. And the most important

aspect, you have deployed to the cloud, so now you are having a variable cost.

If you created a few large instances in the cloud to handle normal traffic, then what

happens during these spikes? Well you are getting more traffic, and your web service

can only handle so many simultaneous connections, so you would have to keep scaling

up your large instance to more large instances. And you are using the large instances

because of the size of your application.

But what if we separated registration, searching, and checkout to their own

microservices? You could put each part in their own small instances, and that way during

spikes, you would only have to add extra small instances or increase the memory/speed of

existing instances. The end result is not only faster throughput but more importantly cheaper

cost. In Figure 2-1, we have a graphical example of how to scale up registration independently.

Chapter 2 Server Side

36

Figure 2-1. Shows the difference in scaling between large and small instances

In Table 2-1 we have a few of our endpoints will be using for the application as well. I

would also argue it’s also much easier to make patch changes and being able to work on

code separately without getting in the way of others work with microservices. If you have

any further questions about microservices, I highly recommend reading Martin Fowler’s

blog on them at https://martinfowler.com/articles/microservices.html.

Chapter 2 Server Side

https://martinfowler.com/articles/microservices.html

37

 Backend Design
This brings us to the design for our application, at least for this chapter. We will add on

and change the endpoints over the next few chapters, but this architecture is the basic

one we are going to develop.

First is the problem we are solving for this chapter. From a high level, we want to

create an application that allows us to upload and download files (preferably media

applications). In addition, we want to store information about the files uploaded and

then be able to run queries to find the files by name and uploaded time and then be able

to download those applications back to us. Since we are creating these applications in an

IoT RESTful world, all the applications should interact with us via REST commands.

To help us get used to creating microservices, we will create two basic services: one

for uploads/downloads and another for querying of the data. The upload/download

service will also need a persistent storage to be able to have a place to retrieve the data

later. The retrieval service will be the sole service to call out to the database. Keeping

these separate does help; if one service is hacked, they don’t have access to everything.

In Figure 2-2, we have the basic pattern of two microservices communicating with each

other and independently communicating with storage.

Figure 2-2. Showing the basic design of our microservice architecture

Chapter 2 Server Side

38

 Database Design
The database design for this application will be rather simple for now, and I’ve added a

bit extra just to make it more interesting for future work though. All we have to do is store

a file to the database and then retrieve it later. The first table will be the media_datas

table and will contain everything we need to know about the media data; in addition, it

will contain the uuid for the device the media data originates from.

The next table will be linked to it in a one-to-many relationship; the comments table

will be able to contain a list of comments on the table. Eventually, when we discuss

authorization, we will add users to both so that we know who made the media and who

the comments are from. In Figure 2-3 we have the database design.

Chapter 2 Server Side

39

In order to spruce up the table a bit, I also added some enumerations. These will be

useful later and useful for data references that do not change often. Hence, why I created

these instead of a relational table. Now if you look deeper in there, you will notice we

have three columns that use the enumerations: media_type, location_type, and

media_audience_type. The first two use a standard enumeration. The last one actually

takes an array of enumerations which will allow us to tag a media file as for friends,

family, or personal.

Figure 2-3. Showing the basic design of our database architecture

Chapter 2 Server Side

40

While much of this database table is generic, there will be specifics particular with

enumerations that use Postgres exclusively. So for this book, realize the code will only

work with Postgres without any modifications.

 RESTful Endpoints
Now that we have our database design, our microservice design, how do the services

communicate? Through RESTful endpoints of course. (Note: In future chapters, some of

these will be changed to GraphQL endpoints.)

We will dive into how each endpoint works further in the chapter, but for now, here is

a list of the endpoints we are creating.

Table 2-1. RESTful endpoints

Service Type Endpoint Parameters

Upload Svc pOSt /api/upload Multipart File

Upload Svc Get /api/download/:id none extra

Query Svc pUt /api/comment/add/:media_item_id comment: the text of the comment

Query Svc pUt /api/media/add { size: <media_size>, location:

<file_loc>, uuid: <uuid> }

 Deploying
For this chapter, we won’t be deploying the application, so we do not have to worry

about bundling the application yet. However, in future chapters, we will deploy using the

following tools:

Docker – For creating images of our application

Kubernetes – For creating the deployment environment

Helm – For package managing our deployment environments

Chapter 2 Server Side

41

 Docker
We won’t be using Docker till later; however, in the “Database” section, we will use

docker to create a postgres instance for us to test locally with. So in order to have you

ready to do that, you should go ahead and download and install docker now from here:

www.docker.com/get-started.

Later in the book, we will get into specifics on how to use Docker; if you have

Postgres installed on your computer using our docker, Postgres is optional.

 Web Framework
The heart of any modern application is the backend server running our web framework

that serves up static and dynamic data as well as allows for updates and queries to the

database. Regardless of what the mobile application, website, or the device does, the

backend not only moves the bits and the bytes but handles the logic to process these bits

and bytes. It is almost ironic that we still call these “web frameworks” since the primary

service of these frameworks is not going to be for a web page, nor do they often serve up

websites. In reality, we should call them “backend web exposed secure services using

REST”; of course, that’s way too long and isn’t even 100% accurate when we get to the

CQRS section. This section will be a combination of example code and code we directly

apply to our system. If you don’t see a file reference in the listing, that means it’s not

directly in our final application.

 Choosing a Web Framework
Many of the “new” languages that have come out over the past 10–15 years like Elixir

or Clojure or to a lesser extent Kotlin or older languages like Ruby that have become

popular have done so due to someone designing a web framework to use with it. Rust

really wasn’t born like that. While it’s certainly picked up speed recently due to its

web frameworks, it was popular because of its pure shell side running. Rust has been

consistently voted as the #1 favorite language by Stack Overflow Developer Survey. I

say this because the state of its web frameworks is in flux and made the decision which

framework to use for the book more difficult.

Hyper is a core framework used for low-level http binding and calling. It’s a great

framework to use if you are writing a CLI that needs to access a web service, but it would

Chapter 2 Server Side

https://www.docker.com/get-started

42

be rather difficult to use to create a full-blown web application. In fact, you’d have to

write so much code you’d be writing Iron.

Iron is based on hyper. It’s not low level, but it’s not as feature-rich as other

frameworks by default. In fact, in order to get in most of the features, you have to

bring in a variety of other middleware designed to work with Iron. This is nice when

wanting to write a light web application but annoying in that you have to constantly

find dependencies to use with it. Also there is some issue with how often it’s updated;

a year ago, there was some issue with not many people working on the code base, but

since then its seemed to have more repo commits. So with Iron, you get a good quick

framework that is very extensible, but you have to pick and choose what to extend, and

for beginners, this can be difficult to know.

Rocket is a full-featured web framework more in line what most people are used to

when they have picked up a modern framework like Phoenix, Grails, or Spring. It’s quick

and works well but has one giant caveat. The framework at the time I wrote the book was

based off of nightly builds of Rust.

And here was the crux of my problem. Do I chase a nightly build, hoping by the time

the book is done, it’s good to go and on a stable build. Or do I take Iron? In the end, I

decided for what this chapter wants; we will use Iron. Thus, we will be ironborn for this

book (GOT reference intentional).

 Start Up Basic Iron
To get started, let’s go over how to make some basic calls to Iron; we will then progress to

more and more advance calls culminating with writing the application we are using.

 Hello World

To get things started, let’s start off with the most rudimentary example, the Hello World

example in Listing 2-1.

Listing 2-1. Creating our basic Hello World example

use iron::prelude::*;

use iron::status;

fn main() {

Chapter 2 Server Side

43

 Iron::new(|_: &mut Request| Ok(Response::with((status::Ok, "Hello World

Rust"))))

 .http("localhost:3000");

}

This is the most basic example one can create. This will start a server binding the

application to localhost:3000. Once bound, you can call the endpoint with http

http://localhost:3000 which will return Hello World Rust. In fact, the way it is

created, it is just bound to the localhost:3000 so any call to it regardless of path and

type will return Hello World Rust. This obviously is not ideal for most applications but

works for our Hello World example. Let’s take a further look at how this works. If you’ve

ever worked with web applications, you know at the root of how it works are three things:

 1. Request – That defines the incoming request; this includes the

request type (get, post), body parameters, multipart, and the

route – everything you want to use to define the application. We

take it for granted that server’s route and control are based on this

information, but it is up to the server to decide what to do with it.

 2. Response – The return values, or redirects. A combination of

status codes, headers, and data usually defines our return and

defines how the client uses the data we return.

 3. Port binding – And finally the port we are binding to. When

starting up, this is the port that every web server has to bind to and

clients then call to. By default, this is port 80 but can be anything.

How does this tie into the previous listing? Because all that information is there

and it’s how we are going to expand on it. The Iron::new takes in just one function that

receives one parameter and returns one thing. That one parameter is the request, and

the return is a response. This is all you need for a web server. This allows iron to start and

run faster than most applications because it doesn’t assume you need the kitchen sink to

use it. This request/response function we pass in is called the handler, and rust allows a

plethora of crates to customize the functionality of how it works; we will use a variety of

handlers as we go on.

I like using the application https://httpie.org/ to test my code. It’s a bit easier to

make requests and to read the responses. Thus, most of the examples in the book will

use it.

Chapter 2 Server Side

https://httpie.org/

44

 Redirects

Another feature is we can redirect the endpoint to another server in Listing 2-2.

Listing 2-2. Redirects all request to rustfortheiot.com

use iron::prelude::*;

use iron::{status, Url};

use iron::modifiers::Redirect;

use router::Router;

fn main() {

 let url = Url::parse("http://rustfortheiot.com").unwrap();

 Iron::new(move |_: &mut Request| {

 Ok(Response::with((status::Found, Redirect(url.clone()))))

 }).http("localhost:3000");

}

You can redirect all or just partial endpoints; in this case, we created just one handler

to use.

 Response Codes

Iron has the standard variety of response codes to use when responding from an

endpoint. The default you see in most of the example applications is the status::Ok;

this correlates to a 200 status code, but everything is available via iron::status which

brings in the codes from the hyper underlayer of hyper::status::StatusCode. To use a

different status code, you can simply change the response creation like in Listing 2-3.

Listing 2-3. Using different status codes

Ok(Response::with(status::Created));

Or even in Listing 2-4 is a more fancy request where we return a 500 based on an

internal exception and a 200 when everything passes.

Chapter 2 Server Side

45

Listing 2-4. Responding with different status codes

extern crate iron;

use iron::prelude::*;

use iron::status;

fn echo(request: &mut Request) -> IronResult<Response> {

 // let body = request.get_body_contents().map_err(|e| {

 let body = request.body.map_err(|e| {

 IronError::new(

 e,

 (status::InternalServerError, "Error reading request"),

)

 })?;

 Ok(Response::with((status::Ok, body.clone())))

}

fn main() {

 Iron::new(echo).http("localhost:3000");

}

 Parsing Parameters

One of the next common concepts is to retrieve parameters. Almost all the requests you

are going to work with in a RESTful application will have to have parameters submitted.

Iron with the help of some middleware crates supports retrieving request parameters in

three different ways. Following are the three ways you can retrieve request parameters:

 1. Your standard URL encoded query or post parameter – This is the

standard form data translated to multiple parameters.

 2. REST parameters – These are parameters on the REST string itself;

if you have http://app/add/:id, you want to be able to access the

id parameter. (Note: That isn’t a real URL but an example.)

 3. JSON data being passed in via the body – This is growing to be

one of the more standard ways to send data requests with RESTful

endpoints.

Let’s go over how to retrieve parameters each of those ways.

Chapter 2 Server Side

46

Params Parsing

Let’s begin with the first item, good old-fashioned parameter parsing. But what exactly

is parameter parsing? When we talk about parameter parsing, we are really referring to

four different types of parameters that you receive in any web application:

• JSON data (Content-Type: application/json)

• URL-encoded GET parameters

• URL-encoded Content-Type: application/x-www-form-urlencoded

parameters

• Multipart form data (Content-Type: multipart/form-data)

These are the typical parameters that have been around for decades to retrieve

properties. We can use the params plug-in to get all of these various parameters; you can

install the plug-in with the crate listed in Listing 2-5.

Listing 2-5. Adding the params plug-in, in file Cargo.toml

params = "0.8.0"

Now that we have the params crate installed, we can use it to get the parameters.

Listing 2-6. Retrieving using the params plug-in, in file src/actions/comment.rs

use params::{Params, Value, Map}; ①

 let map = req.get_ref::<Params>().unwrap(); ②

const COMMENT_FIELD: &str = "comment";

fn get_comment(map: &Map) -> String {

 let x: &str = match map.find(&[COMMENT_FIELD]).unwrap() { ③
 Value::String(s) => s.as_ref(),

 _ => "none",

 };

 String::from(x)

}

Chapter 2 Server Side

47

 ➀ Brings in the Params and Value from the params crate to be used.

 ➁ This line is what converts the parameters into a map of keys and

values.

 ➂ Finally, the last part will go through the map and find the attribute

you are using.

And here you have it; it’s not as simple as one would like, but you can reuse the

method. One thing to note here, in this sequence of code, I passed in the map, not the

request; this is because I need to reuse the request later to get the rest ID, and it caused

too many borrow issues trying to pass the mutable request around.

URL REST Parsing

The use of RESTful interfaces has been popular for over a decade now, and we often still

have endpoints we want to parse. For our adding a comment function, our endpoint was

defined in the router in Listing 2-7.

Listing 2-7. The router definition with an id, in file src/http.rs

 add_comment: put "/comment/add/:media_item_id" => comment::add,

You can see on the URL we are passing in a media_item_id; this will be the UUID PK

(primary key) for the database. In order to access this inside our comment controller, we

will use the request extensions to pull the router object off of it like in Listing 2-8.

Listing 2-8. The router definition with an id, in file src/actions/comment.rs

fn find_media_id(req: &Request) -> Uuid {

 let id: &str = req.extensions.get::<Router>().unwrap()

 .find("media_item_id").unwrap();

 Uuid::parse_str(id).unwrap()

}

JSON Parsing

Finally, JSON parsing, there is a library for that as well. This library is for parsing the

body into json data. The application takes the raw json passed into it and parses it into

three different types depending on the need:

Chapter 2 Server Side

48

 1. Raw – Raw parse into a string; this is useful if you are just going to

store the result into the database or return to another layer.

 2. Json – Can be resolved into a Json object. This can be useful if you

want to reuse the data in Json form or create searches in Json, or

more importantly, it is unstructured data but may have certain

fields you need for processing.

 3. Struct – For structured data that you plan to store in a database or

use with implementations on the struct, this method works great.

And this is the example we will show (since in the future, this

struct will have an impl to save to the database).

For our application, we are going to use the upload_svc to receive a media file; it

will then process the media into its raw data and send it to the retrieval_svc to store.

In Listing 2-9, we have the struct of the media data that will 1:1 emulate the json data we

will be receiving from it.

Listing 2-9. The MediaData struct that emulates the record it will receive, in file

src/actions/media_data.rs

use crate::database::PgPooled;

use crate::models::metadata::{Image,Video};

use serde_derive::Deserialize;

use crate::database::{MediaEnum, LocationEnum};

#[derive(Deserialize, Debug, Clone)]

pub struct MediaDataAdd {

 pub id: Uuid,

 pub name: String,

 pub media_type: MediaEnum,

 pub location: String,

 pub location_type: LocationEnum,

 pub size: i32,

 pub device_id: Uuid,

 pub image_data: Option<Image>, ①
 pub video_data: Option<Video> ②
}

Chapter 2 Server Side

49

#[cfg(feature = "ch02")]

impl MediaDataAdd {

 fn save(self: Self, pool: &PgPooled) {} ③
}

 ➀ Only populated for an image object.

 ➁ Only populated for a video object.

 ➂ Placeholder till we discuss databases.

The option for the image and the video is because we will receive either an image or

a video back. Now in Listing 2-10, we will receive the JSON string; let the parser run and

then call the MediaData.save.

Listing 2-10. media_datas add function using the body parser, in file

src/actions/media_data.rs

pub fn add(req: &mut Request) -> IronResult<Response> {

 info!("-- add media data --");

 let json_body = req.get::<bodyparser::Json>();

 info!(">>>> JSON ::: {:?}", json_body);

 let struct_body = req.get::<bodyparser::Struct<MediaDataAdd>>(); ①

 match struct_body {

 Ok(Some(media_data)) => {

 info!("Parsed body:\n{:?}", media_data);

 media_data.save(&req.db_conn()); ②
 Ok(Response::with((status::Ok, "OK")))

 },

 Ok(None) => {

 warn!("No body");

 Ok(Response::with(status::BadRequest)) ③
 },

Chapter 2 Server Side

50

 Err(err) => {

 error!("Error parsing meta data :: {:?}", err);

 Ok(Response::with(status::InternalServerError)) ④
 }

 }

}

 ➀ Allows you to pass in a struct to the body parser to create that struct

from the body.

 ➁ Allows us to use the rendered structure body as an object and use it.

This method we haven’t implemented yet, but will do so later.

 ➂ Returning a 400 error code.

 ➃ Returning a 500 error code.

You will notice we have three different return states for this. The first is that the body

is parsed, and we can then perform actions on the parsed JSON. The next is we didn’t

receive any JSON body, so we return a 300. And finally, there is a problem parsing the

data; this could be due to some internal issue or more likely the data doesn’t match the

format we expected.

 Routing

As I am sure you noticed in the previous examples, we were binding the entire site to

one handler regardless of path supplied. This is great for examples, but in real life, we are

going to have multiple paths to the application (at least usually). We will use a plug-in

to help us with routing. The routing is processed through the router crate that can be

installed via Listing 2-11.

Listing 2-11. Add the router crate to the Cargo.toml

router = "0.6.0"

Setting up routing is fairly easy; it only requires three things to define a route. You

need a unique key for it, the actual path, and the service you are routing to. The Router

can be created by calling out to the struct and its impl, or you can use a macro that

makes it a bit easier to read; we will use the macro. In Listing 2-12, we are going to add

the routes for the download service; they consist of a health check, an upload which will

take in JSON and MultiPart file, and a download service that just takes an id.

Chapter 2 Server Side

51

Listing 2-12. Routes for the upload service, in file src/http.rs

use router::{Router}; ①
use router::router; ②

fn create_routes(url: &str) -> Router {

 let owned_name = format!("{}", url).to_owned();

 router!(

 health: get "/healthz" => health,

 upload: post "/upload/:device_id" => move | request: &mut Request |

upload(request, &owned_name), ③
 download: get "/download/:id" => download)

}

 ➀ This is the struct being returned.

 ➁ This allows us to use the macro.

 ➂ Using the move allows us to pass a parameter to the upload aside from

the Request.

What is being created here is a handler, much like we had when we created the

individual requests, but then this handler delegates to each of the incoming requests

based on the request path. In order to activate the router, set it as the handler on the

request like in Listing 2-13.

Listing 2-13. Routes for the upload service

 Iron::new(router).http("localhost:3000").unwrap();

When we start the server in our applications, we will be passing command-line

variables to the application and parameters for the URL as opposed to hard-coding it.

 Middleware

Finally, we will end the web discussion with something we have talked about throughout

this chapter, middleware. The middleware is what allows all the extra features we have in

combination with macros. We will add more middleware to the mix in the next section,

but let’s run through a few examples of middleware to gain a better understanding how

to use it and what it does. We have handlers to handle incoming requests and outgoing

Chapter 2 Server Side

52

responses; the middleware acts in conjunction with these to control the processing flow

of a request. Middleware handlers will act as normal wrappers around your control flow

to your actions. The purpose of which is to manipulate the requests and response and

even control whether the handler should be used. There are three types of middleware

we can create:

 1. BeforeMiddleware – This middleware runs before your action gets

processed. This can add to the request via the req.extensions

TypeMap adding functionality, like user information for a logged

in user, database connection, or whatever you want. It can also

control the flow to actions like it does with the router middleware

and can even decide if you progress further, in the case of

authorization.

 2. AroundMiddleware – This wraps around the handlers and is

used to manipulate the Response object itself. It can change the

Response passed to subsequent handlers.

 3. AfterMiddleware – This is similar to the AroundMiddleware, except

that it’s not for changing the response but for changing headers,

logging, and so on.

Creating middleware is actually quite easy; each of the types I discussed earlier are

traits. And you will just have to create a struct that implements that particular trait you

want to use; your struct can even implement multiple traits if necessary.

Logging Middleware

Let’s start with a basic example in Listing 2-14; that just uses the BeforeMiddleware

and AfterMiddleware to perform logging around a request. We are going to perform a

println before the action is called and after (we won’t use this code in our deployed

code, but it’s here for our first example).

Listing 2-14. Simple logging middleware

/// Logging example

/// Example here : https://github.com/iron/iron

use iron::{typemap, BeforeMiddleware, AfterMiddleware};

use iron::prelude::*;

Chapter 2 Server Side

53

pub struct LoggerMiddleware; ①

impl BeforeMiddleware for LoggerMiddleware { ②
 fn before(&self, req: &mut Request) -> IronResult<()> {

 println!("Log - Before Start");

 Ok(())

 }

}

impl AfterMiddleware for LoggerMiddleware { ③
 fn after(&self, req: &mut Request, res: Response) ->

IronResult<Response> {

 println!("Log - End Start");

 Ok(res)

 }

}

 ➀ Create a structure that will store our middleware.

 ➁ Implement the BeforeMiddleware trait for the struct.

 ➂ Implement the AfterMiddleware trait for the struct.

And there you have it, a middleware that is fully created; however, it is not connected

to our system yet. To do this, we are going to assume we have the router defined as well.

If you didn’t have the router, this would just be any action handler. But we are going

to use the chain to create a chain of handlers that gets called. This will allow us to add

multiple handlers. Our existing code looks like Listing 2-15 for creating an application.

Listing 2-15. Basic existing application

let router = create_routes();

Iron::new(router).http("localhost:3000");

We will now use chain to build up a chain of before and after around the handler. In

Listing 2-16 the chain, we need to specify if the struct we created is used for before or

after or around middleware.

Chapter 2 Server Side

54

Listing 2-16. Wrapping a chain around the handlers

use mount::Mount;

use iron::prelude::Chain;

 let router = create_router();

 let mut mount = Mount::new();

 mount.mount("/", router); ①

 let mut chain = Chain::new(mount); ②
 chain.link_before(LoggerMiddleware); ③
 chain.link_after(LoggerMiddleware); ④

 Iron::new(chain).http("localhost:3000"); ⑤

 ➀ Mounts our router to the / path; we could just as easily mount it to

“/api” which is fairly common for a web application. Thus, to call any

endpoint will be like “/api/healthz”.

 ➁ Creates the chain using the mount as the handler; we could use the

router or the individual handler if there was just one.

 ➂ Will attach the struct that has a BeforeMiddleware to be run before

the chain starts.

 ➃ Will attach the struct that has a AfterMiddleware to be run after the

chain starts.

 ➄ Now with the chain that also contains our mount, which contains our

routes, we bind that to port 3000 for execution.

And once all this is run, you now have a web application that has routes and supports

a logging middleware.

Timer Middleware

Let’s take a look at a slightly more complex example, the timer example. What this

example is showing is that in the before, we can not only retrieve and use the request,

but we can actually insert values onto the request that can then be used in either other

middleware or our handlers. We are essentially storing these into a key/value store.

Chapter 2 Server Side

55

If you set attributes in a general map on the request, this could pose many problems

if you started adding more and more middleware. It would be difficult at compile

time to know if we had multiple overwrites of a key. What we do instead is we use the

typemap::Key object that then gets set to a struct in our module. Therefore, whenever

we reference the key, we are going to use the struct. This also allows us to create complex

objects that can be used by our middleware. The struct itself could contain multiple

values and have implementations of other functions. When we get to diesel in the next

section, we will see a more complex example that then sets the middleware to retrieve

our database connectivity in our handler, but in Listing 2-17 we want to just start a timer

and then be able to retrieve our AfterMiddleware.

Listing 2-17. Timer example

// Copiedfrom https://github.com/iron/iron

use iron::prelude::*;

use iron::{typemap, AfterMiddleware, BeforeMiddleware};

use time::precise_time_ns;

pub struct ResponseTime; ①

impl typemap::Key for ResponseTime { type Value = u64; } ②

impl BeforeMiddleware for ResponseTime {

 fn before(&self, req: &mut Request) -> IronResult<()> {

 req.extensions.insert::<ResponseTime>(precise_time_ns()); ③
 Ok(())

 }

}

impl AfterMiddleware for ResponseTime {

 fn after(&self, req: &mut Request, res: Response) ->

IronResult<Response> {

 let delta = precise_time_ns() - *req.extensions.

get::<ResponseTime>().unwrap(); ④
 println!("Request took: {} ms", (delta as f64) / 1000000.0);

 Ok(res)

 }

}

Chapter 2 Server Side

56

 ➀ Create the struct that is going to hold our start timer.

 ➁ Implementing the typemap::Key will allow us to use this structure to

set in the req.extensions.

 ➂ Use the req.extensions to add functionality, passing in the

ResponseTime struct with the value of the time in ms of right now.

 ➃ Retrieve from the extensions the ResponseTime that we had set in the

BeforeMiddleware.

And there you have it, an easy timer to add to monitor how long your particular

route took to run. We will add on to more middleware as the chapters go along, some

out-of- the-box crates and others customized.

 Database with Diesel
Much like our choices with web frameworks, there are a variety of frameworks out there

to pick from for calling a database from Rust. Many of the modules out there are dealing

with calling to specific databases. And while with this application we are only calling

to a specific database, I wanted to use a more full-featured framework with object-

relational mapping (ORM) support. And like most frameworks out there, one stood tall,

Diesel. Diesel is a well-documented full-featured extensible framework to use for our

application.

The schema we are using for the example applications will be the same one we

initially used for our application (we will make some changes as we go along and add

features). But this will help us be able to test out and get comfortable with Diesel before

we dive into integrating it into the web application. Much of the application will be able

to be integrated one for one in there, but we will make some slight changes along the way

to align with what we are doing.

For reference, the Diesel home page https://diesel.rs/ has a great getting started

as well as API documentation that can be invaluable for new and even experienced

users.

Chapter 2 Server Side

https://diesel.rs/

57

 Getting Started
Before we get started writing actual code, let’s make sure we have the necessary tools

installed to work. From Chapter 1, you should already have cargo installed, but there is

also a diesel command-line tool that is valuable in running migrations and deploying

the application.

To install the command-line interface, run

cargo install diesel_cli

If you had issues running that, it could be because you do not have a database

backend library for diesel. If that’s the case, you will need to first make sure you have

Postgres library files installed (or MySQL, but we just care about Postgres).

Since we are using this to interface with Postgres, you need to install Postgres as well (at

least the library files). You can install it any way you want; the way I most commonly install

applications is via Homebrew, but this only works with OSX and Linux computers. If you

have one, I am sure you have it installed; if you don’t, you can go to https://brew.sh/ for

installation instructions. Once brew is installed, you can install postgresql for your Mac or

Linux box:

brew install postgresql

After that, you can try to re-install your diesel_cli application, specifying the

postgres feature:

cargo install diesel_cli --no-default-features --features postgres

And finally, if that all doesn’t work, do not fret too much; you can still continue;

just realize when we are referencing using the diesel cli, you will have to perform the

operations manually. We will mostly use the cli to set up the database and run our

migration scripts accordingly.

 Configuring the App
In a new or existing application, let’s add the diesel dependency in Listing 2-18; you can

add this to the application we already started building.

Chapter 2 Server Side

https://brew.sh/

58

Listing 2-18. Adding the dependencies, in Cargo.toml

Enable Number, this allows us to use big decimal that we can use in the

place of f64

serde_json = needed for using JSONb

uuidv07 : needed for higher uuid versions (in the master this was changed

to just uuid)

diesel = { version = "^1.4.4", features = ["postgres", "r2d2", "chrono",

"uuidv07", "numeric", "serde_json"] }

dotenv = "0.15.0"

Two things you notice, you will see we have the standard add but also the features.

We will need to activate the feature for the corresponding database you are writing to.

In our case, we are using postgres. I also included the dotenv; this is not necessarily

needed for our diesel but will be needed by our connection script to read our database

URL variable which we will set with an environment variable.

 Creating the Database Tables
We have the cargo configured; let’s start writing some simple database insertion code.

Diesel has the concept of migrations which will help push us along the process. The

migrations are designed to be able to create and drop, so that if you need to revert a

change, you easily can. For our situation, the revert will be pretty simple and just drops,

but in a full production app, both the update and drops could be at the column level and

even move data around. It will be up to you to determine how complex your update gets.

To get things kicked off, we need to create the migrations directory first. The

migrations directories are readable timestamp directories with the name of the table

we are creating at the end. Now we can create this by hand, but it’s a bit easier to have

diesel do it for us. To create the first table, run the following from the root of your

project directory:

diesel migration generate comment

This in turn will create a directory under migrations with a timestamp + comment

and inside of that will have two files, the up.sql and down.sql. The up is for the SQL

generation, and the down is for the revert. Let’s create a comments table in Listing 2-19

and add two fields to it.

Chapter 2 Server Side

59

Listing 2-19. For our create table for comments

CREATE TABLE comments (

 id SERIAL PRIMARY KEY,

 body TEXT NOT NULL,

 media_item_id UUID NOT NULL references media_datas(id),

 created_at TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,

 updated_at TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP

)

Listing 2-20 is a fairly simplistic listing but gets the point across of what we are

building. The down.sql will simply list our drop statement for the comments table.

Listing 2-20. To drop the comments table

DROP TABLE comments;

 Generating the Database with Docker

Now that we have the start of our databases, the next step will be to generate the tables;

but to do it requires a few more steps. The biggest step of course is that we need a

database to write to. If you already have Postgres installed and want to use that instance,

you can skip the next part, but I actually prefer this method than simply having Postgres

run all the time.

If you are like me, you do quite a bit of work from your laptop, but you also do quite

a few projects from there. You could be writing a Postgres-Rust app one day; another

day, you may want to demo a Redis+Mongo+Spring app for another client. Your needs

change, and I don’t want to have to get into a habit of always remembering what

database I have to configure, where to pull it from, and did I use brew for one and a

package installer for the other. The solution to make your life easier is docker. Docker

is a brilliant image container, and there are many custom images out there. Besides

the default postgres images, you can even find postgres images that have database

information embedded into them as well, which is actually what we want to use for

performing future geographic information system (GIS) queries. The default image you

could use is postgres, but we want one with GIS, so we will be using mdillon/postgis.

Without diving too much into docker (we will get more into it in Chapter 7), docker

contains image repositories both remotely and locally. The remote repositories are good

at storing known images you want to share, and the local allow a local copy of either

Chapter 2 Server Side

60

those ones or ones you need to use. Basically for us, we can keep an image of all the

different database, tools, and applications we may want to run. But for now, let’s stick

with installing postgres. In Listing 2-21, we run the image in our docker container.

Listing 2-21. Downloading a Postgres GIS and running it

docker network create -d bridge iot ①
docker pull postgres ②
docker run --name rust-iot-book --net=iot --volume ~/.docker/volumes/post

gresgisiot:/var/lib/postgresql/data -p 5433:5432 -e POSTGRES_USER=user -e

POSTGRES_PASSWORD=password -e POSTGRES_DB=rust-iot-db -d mdillon/postgis ③

 ➀ Creates a bridge network, useful for allowing multiple docker images

to talk to each other.

 ➁ Pulls the Postgres database.

 ➂ Runs the docker image command.

Make sure the database you use in your application is the one created here; the one

created by diesel does not have the GIS active and will affect our application in the next

chapter.

Line 1 will pull the postgres GIS database into our local docker image repository.

Line 3 is where it gets more interesting; this is what actually starts up the repository.

Now you could have started it up with a simple docker run mdillon/postgis, but that

wouldn’t have been as helpful. It is important to understand what is going on here. The

image created is not being run as a local application; it is being run in its own image

in its own virtual machine (VM). So the files it writes to and the ports it binds to are

not by default accessible to the user unless we explicitly say otherwise, and how do we

accomplish this, we send arguments to the run. Let’s take a look at what each of these

arguments does:

--name – This will give us an easy name to start and stop the server once we initially

run the container and be able to give a name to the running container (as opposed to a

docker id). Now we will be able to start/stop the server using the name rust-iot-book.

--volume – As I stated earlier, the image is not run in our local environment;

however, we may want the image to have access to a local volume. This is for a number

of reasons. In a traditional application, you may want to share data, but here, it’s mostly

Chapter 2 Server Side

61

so we can persist the data between starts and stops and computer reboots. In postgres

/var/lib/postgresql/data is where the underlying data for the database is stored. This

is why we will map a local folder to that directory, so during stops, we don’t have to

recreate the data.

-p – I mentioned earlier that the containers run in their own environment not

exposed to the external environment (which would be our local). For a database, this

wouldn’t work for us; our Rust app ran from the command line would never be able

to read/write to the database. What this parameter does is gives you a from and to, to

expose the port. The port in a postgres application is 5433 so we have to use that as the

to, but to make things simple, I use the from as the same. To simplify, think of 5433:5432

as local:docker_port. I set it to forward to port 5433 since its PostGis may interfere with

an existing database you have installed and wanted to make this seamless.

-e – You will notice multiple -e’s throughout our call, which stands for as you

may have guessed environmental variable. These are the environmental variables the

application will use at startup. For postgres, these will create a default database named

diesel_demo as well as creating a user named user with password password; that

account though will allow us to dynamically create more schemas in the application

when we run the diesel scripts.

-d – Finally, one of the more important options is -d; this specifies the docker image

we are going to use to spin up the virtual machine with. And this is our postgres GIS

database.

That set of commands will start up the application; let’s go over a few more

commands that you will find useful when using docker.

Docker Running Containers

If you want to view all the docker containers running, you can type docker ps and you

will get a list of all the containers as well as when they were created and how long they

have been up for.

Stopping Docker

If you want to stop the container running, you can use docker stop rust-iot-book to

stop the image we created earlier.

Chapter 2 Server Side

62

Starting Docker

If you have manually stopped the docker container or it’s stopped due to restarting, you

can restart it. (Note: Reboots do not automatically restart a container). Luckily, you do

not need to run the preceding long script since the container has already been created;

you can simply run docker start rust-iot-book and it will start up the image again

with all the parameters we set earlier.

Running the Generation Scripts

Now back to diesel. We have created our migration scripts and started up a postgres

instance; we are now ready to set up our database and run our migrations; we just need

to do a few things more to get ready.

Diesel has quite a few mechanisms to help automate our database creation, but to

take advantage of them, we have to tell it where our database exists. You can do this via

an environmental variable on your system, but the easiest way is via an .env file in the

root of your project like in Listing 2-22.

Listing 2-22. Our environmental variable with the database URL, in file .env

DATABASE_URL=postgres://user:password@localhost:5433/rust-iot-db

This sets up an environmental variable named DATABASE_URL that the diesel will

read and use to create the database. The preceding example uses the username and

password we created earlier and creates a database schema named diesel_db_example.

Now we are ready to use the rest of the diesel commands to create the database.

First thing you need to do is set up the database, which is run with the diesel setup

command; this will do a few things. This will create a schema (assuming it has privileges

to do so) in your database and will also run your initial set up script. This will be creating

a folder named 00000000000000_diesel_initial_setup with an up.sql and down.sql

in the migrations folder, much like our other migrations (the folder name is picked

so it’s guaranteed to always run first). The file adds one basic item that you can see in

Listing 2-23.

Chapter 2 Server Side

63

Listing 2-23. Showing the initialization script for our database

CREATE OR REPLACE FUNCTION diesel_manage_updated_at(_tbl regclass) RETURNS

VOID AS $$

BEGIN

 EXECUTE format('CREATE TRIGGER set_updated_at BEFORE UPDATE ON %s

 FOR EACH ROW EXECUTE PROCEDURE diesel_set_updated_

at()', _tbl);

END;

$$ LANGUAGE plpgsql;

CREATE OR REPLACE FUNCTION diesel_set_updated_at() RETURNS trigger AS $$

BEGIN

 IF (

 NEW IS DISTINCT FROM OLD AND

 NEW.updated_at IS NOT DISTINCT FROM OLD.updated_at

) THEN

 NEW.updated_at := current_timestamp;

 END IF;

 RETURN NEW;

END;

$$ LANGUAGE plpgsql;

This will also add a trigger to automatically update the updated_at column on your

tables if they have one. This makes it easy and useful to have your database updated_at

field automatically updated by the database.

After running diesel setup in your application, there are a few more commands

you can choose to run:

• diesel migration pending – This will let us know if there are any

migrations that need to be applied to the database that are not

there. The way the system keeps track of if we have migrations is by

checking the database table _diesel_schema_migrations which will

track the migrations run.

• diesel migration run – This command will run any of the pending

migrations.

Chapter 2 Server Side

64

• diesel migration list – This command lists all the migrations

that have been run and any that are in a pending state. This becomes

useful as you have more and more database tables and migrations.

• diesel migration revert – Finally, it can become necessary to

revert a migration; this often happens in design when you realize

you want to change what you created or if you want to back out

a migration. This command will only revert the last previously

committed change, but can be rerun to revert subsequent ones as

well.

There are many more commands, but these are the most common that you will use.

Schema File

There are a few side effects of running the preceding scripts. The first one is when

you run diesel setup, it will also create a diesel.toml file. This has quite a few

configurations we aren’t going to talk about here, but you can learn more at

 http://diesel.rs/guides/configuring-diesel-cli/. The main thing it does is

define a file path for the schema.rs.

The schema.rs is actually a generated file that will contain our table definitions

based on our database migrations. These are encapsulated in a rust macro, and we will

use it to do our ORM querying, updating, and so on from the database in our Rust code.

And when we get to database enumerations, we will actually have to modify the file

directly. In Listing 2-24 is the manual modifications of it.

Listing 2-24. Showing the database schema generated from adding our

comment table

table! {

 comments (id) {

 id -> Int4,

 body -> Text,

 media_item_id -> Uuid,

 created_at -> Timestamp,

 updated_at -> Timestamp,

 }

}

Chapter 2 Server Side

http://diesel.rs/guides/configuring-diesel-cli/

65

table! {

 health_checks (id) {

 id -> Int4,

 device_uuid -> Uuid,

 data -> Jsonb,

 user_id -> Uuid,

 created_at -> Timestamp,

 updated_at -> Timestamp,

 }

}

As you can see, this tells Rust what the table name is for reference, the attributes, and

their types as well as what type is the primary key. Later, we will look at one that has joins

and other attributes in it as well. But first, let’s learn how to do basic querying, updating,

inserting, and deleting against it.

 Basics
Before we start diving into how to do queries in diesel, I feel there are some

fundamental differences between diesel and other ORMs that we should discuss. Most

ORMs follow a pretty typical model of mapping a database relation to a concrete object.

So that if you have a comments table, you have a comment object/struct/class whatever

your system is using to store objects. These relations tend to be 1:1; for every comment

table, you have one comment struct and then you use that for everything – for adding,

deleting, updating, modifying, querying, and so on. But this is not necessarily and not

often the case with diesel. You will create a struct for what you are trying to do since

often the fields will be different; you will then use traits so that struct knows what it can

do, whether it can query, insert, and so on. One of the reasons you do this is because

when inserting you may not have an id, but on querying, you will. On first look, this

seems weird, but in practice, it makes things easy and useful, and since you can easily

place multiple structs in one file, your code still stays very organized.

Chapter 2 Server Side

66

 Inserting

Now that we have everything set up, the first thing you want to do is insert into the

database. There are quite a number of different ways to do this; we will go over a few of

them here.

Our first example is in Listing 2-25; you can create a database record passing in the

column types individually and then setting them on the table. This methodology is easy

for inserts that are small in number or run ad hoc.

Listing 2-25. Create a comment passing a string, in file src/models/comment.rs

pub fn add(conn: &PgPooled, media_id: Uuid, bod: String) -> i32 {

 use diesel::{RunQueryDsl, ExpressionMethods};

 use diesel::insert_into;

 info!("insert into the comment database");

 match insert_into(comments)

 .values((body.eq(bod), media_item_id.eq(media_id))) ①
 .returning(id) ②
 .get_result::<i32>(&*conn) { ③
 Ok(val) => { ④
 val

 },

 Err(e) => {

 warn!("insertion failed, likely invalid reference : {}", e);

 -1

 }

 }

}

 ➀ The body in this code represents the body field in schemas::table.

 ➁ You can pick the column to return; id is the most usual since it’s the

unknown at insertion time for a serial db type.

 ➂ You have to give the type for the id, in this case, i32.

 ➃ Checks the return of a result, returning negative 1 if it doesn’t

create any.

Chapter 2 Server Side

67

The other way to insert is to have a struct use a macro; this will be a struct that is a

subset of the full record and items like the serial primary key; the auto created dates are

not a part of the struct. The struct only contains what we plan to insert. In addition in

Listing 2-26, we use a diesel macro that allows it for insertion.

Listing 2-26. Creates a new struct that has the macro derive(Insertable) on it

for insertion, in file src/models/comment.rs

use diesel::Expression;

// need to bring in the comments module for this to work

#[derive(Insertable, Queryable, PartialEq, Debug)]

#[table_name="comments"]

pub struct NewComment {

 pub body: String,

 pub media_item_id: Uuid,

}

With that object in Listing 2-27, you can then pass that into your function and save it

directly on the table; we will be using this methodology in Chapter 3 to insert the media

data information.

Listing 2-27. Pass in an object to add to the table

fn create_comment_execute<'a>(conn: &PgConnection, c: &'a NewComment) ->

usize {

 use schema::comments::dsl::*;

 let inserted_rows = insert_into(comments)

 .values(c)

 .execute(&*conn).unwrap();

 inserted_rows

}

Alternatively in Listing 2-28, we could have saved it but then returned the resulting

result object as well.

Chapter 2 Server Side

68

Listing 2-28. Pass in an object to add to the table

insert_into(comments)

 .values(c)

 .get_result(&*conn)

 .expect("please don’t error out")

 Deleting

Deleting is a pretty simple task as well. We can delete based on any attributes on the

table. In the Listing 2-29 example though, we will delete based on ID since it is the most

often use case.

Listing 2-29. Deleting an object from the database, src/model/comment.rs

pub fn delete(conn: &PgPooled, comment_id: i32) -> DbResult<u32> {

 use diesel::{QueryDsl, RunQueryDsl, ExpressionMethods};

 use diesel::delete;

 //use diesel::prelude::;

 let result = delete(comments.filter(id.eq(comment_id)))

 .execute(&*conn);

 match result {

 // Convert since we get it as Usize

 Ok(rows_deleted) => Ok(rows_deleted as u32),

 Err(error) => Err(error),

 }

}

You will notice we also grab the result and use a matcher against the result to

determine the rows deleted so we know if the rows are deleted.

 Querying

Another common operation with database is to query the data. This as well can be

handled multiple ways. There is a DSL layer built on top of connections to perform

querying operations, as well as calls to find all or find by primary key. In Listing 2-30, we

will retrieve all published posts.

Chapter 2 Server Side

69

Listing 2-30. Querying from the database

use diesel_demo::schema::posts::dsl::*;

 let connection = establish_connection();

 let results = posts.filter(published.eq(true))

 .limit(5)

 .load::<Post>(&connection)

 .expect("Error loading posts");

 println!("Displaying {} posts", results.len());

 for post in results {

 println!("{}", post.title);

 println!("----------\n");

 println!("{}", post.body);

 }

We will go into more examples as needed throughout the book when the time for

each query comes.

Your Queryable struct has to have the fields in the same order as they are in the

table! definition.

Field Order
Using #[derive(Queryable)] assumes that the order of fields on the Post struct

matches the columns in the posts table, so make sure to define them in the order seen in

the schema.rs file.

 Using Enumerations
When creating database applications, we often have data that is used for drop-downs,

selectors, and anything that is a type. There are two ways to represent the data usually.

The first is to have a table with a one-to-many relationship to the main table. This is

good for information that can be changed frequently. And even if the data is not changed

often, the data could just be used for displayable purposes. However, often the data

never changes, and more importantly, that data is needed for use in the application to

make decisions. Take our application; we are going to store data in S3 or local file store.

We also want to have different options for handling audio, video, or photo data. The way

we generally handle these situations in code is via enumerations, and that is how we are

Chapter 2 Server Side

70

going to handle them here. Different databases have different support for enumerations.

MySQL will make you use an int with a sequence to represent the data; however,

Postgres does have an enumeration type we can map the type to. We can also store an

array of enumerations to one field to perform some multi-selection stores. This will allow

us to query the database faster than having a multi-table querying with a many-to-many;

you would normally need to perform this operation. How we do this will take a few steps

and is not super simple but not overly complex either. Enumerations themselves are

part of the Rust language; we just need to use a library to hook it into the database. In

Listing 2-31 we define our location enum.

Listing 2-31. Our location enumeration to determine whether to write to S3 or

Local

pub enum LocationEnum {

 S3,

 Local

}

A fairly straightforward enumeration, we will have three totals in our code. We won’t

have all the examples in the book, but they will be in the code for the book. So now that

we have an enumeration written, let’s look at how to create enumerations in Postgres. In

Postgres, we can create custom enumeration types so we will start with creating three of

those in Listing 2-32.

Listing 2-32. Creating the enumeration types for the database

CREATE TYPE media_enum AS ENUM ('image', 'video', 'unknown');

CREATE TYPE location_enum AS ENUM ('s3', 'local');

CREATE TYPE media_audience_enum AS ENUM ('personal', 'friends'' family');

In here, we have created enumerations for the different types of media, the location

it’s stored in, and the audience type. Now let’s apply them to our media_datas table.

But first the media_audience, we could really apply more than one to a piece of media,

so let’s make that an array so we can save more than one. In Listing 2-33, we added our

media types to the media_datas table.

Chapter 2 Server Side

71

Listing 2-33. Adding the media_datas to the table

 media_type media_enum NULL,

 location_type location_enum NOT NULL,

 media_audience_type media_audience_enum[] NULL

 Diesel Derive Enum Crate

OK, now that we have our database updated, the enumerations in place, it’s time to

integrate this change with Diesel. Out of the box, we do not have tight integration;

luckily, there is a diesel enumeration crate that gives us a hand. The diesel derive

enum crate (https://github.com/adwhit/diesel-derive-enum) can be added to our

dependencies in our Cargo.toml in Listing 2-34.

Listing 2-34. The crate for the diesel-derive-enum

diesel-derive-enum = { version = "0.4", features = ["postgres"] }

One thing to remember is since every database treats enumerations differently,

you will have to activate the feature for the trait you are using. In this case, we will be

using postgres; you can select either the aforementioned postgres, mysql, or sqlite.

Then in order to use the diesel_derive_enum, we need to apply the trait DbEnum to our

enumerations like in Listing 2-35.

Listing 2-35. For having an enumeration

#[derive(DbEnum, Debug, Eq, PartialEq, Deserialize, Clone)]

#[DieselType = "Media_Audience_Enum_Map"]

#[derive(GraphQLEnum)]

pub enum MediaAudienceEnum {

 Personal,

 Friends,

 Family

}

What this trait does is create a custom type that can be used by diesel for the

schema mapping. By default, this trait will use the name of the enum as the custom type

we have to define in the schema. But we can also create our diesel type name like in

Listing 2-36.

Chapter 2 Server Side

https://github.com/adwhit/diesel-derive-enum

72

Listing 2-36. For having an enumeration

#[derive(DbEnum, Debug, Eq, PartialEq, Deserialize, Clone)] ①
#[DieselType = "Media_Enum_Map"] ②
#[derive(GraphQLEnum)]

pub enum MediaEnum { ③
 Image,

 Video,

 Unknown,

}

 ➀ Applying the DbEnum and other traits to this enumeration.

 ➁ Changing the diesel type name that will be used.

 ➂ Defining our enumeration.

The real purpose of using this is if you want to use the diesel cli print-schema

command, with the cli it is going to derive the type from the database type, and with

databases we usually separate types by underscores, but with Rust structs we use camel

case. This would make media_enum enum type in the database to the Rust enumeration

Media_enum, hence the usefulness of this. The next part gets a bit tricky – how to make

this all work with our schema. For the most part, our schema is derived when you run

migrations and does get overwritten each time you run a new migration. However, since

these types are only created when the trait is created, we will have to manually modify

the schema.rs, specifically the table! macro that you have the enumerations in. In

Listing 2-37 we have our modifications ot the schema.

Listing 2-37. Manual modifications to the schema

table! {

 // Manual edition

 use diesel::sql_types::{Integer, Array, Text, Bool, Timestamp,

Nullable, Uuid}; ①
 use super::Media_Enum_Map; ②
 use super::Location_Enum_Map;

 use super::Media_Audience_Enum_Map;

Chapter 2 Server Side

73

 media_datas (id) {

 id -> Uuid,

 name -> Text,

 note -> Nullable<Text>,

 media_type -> Media_Enum_Map, ③
 location -> Text,

 location_type -> Location_Enum_Map,

 device_id -> Uuid,

 media_audience_type -> Array<Media_Audience_Enum_Map>, ④
 size -> Integer,

 published -> Bool,

 created_at -> Timestamp,

 updated_at -> Timestamp,

 }

}

 ➀ Manually bringing in the sql types for diesel.

 ➁ The three enumeration types that we defined in the mod.rs file.

 ➂ Mapping using our custom diesel_type.

 ➃ Our array using the name of the structs directly without the custom

override.

Probably the most startling line is the #1 point bringing in the sql_types. But this is

necessary; if not, it won’t be able to find the types once we started creating custom types.

At this point, we now have a database with schemas and queries we can make use of.

 Relationships
Diesel supports all your standard relationships, the one-to-many, many-to-one,

and many-to-many. When you create your database entry with a relationship, it will

automatically get reflected in the schema.rs and then be able to be used for querying. In

Listing 2-38 is the added reference to schema.rs.

Listing 2-38. Showing relationships in diesel

joinable!(comments -> media_datas (media_item_id));

Chapter 2 Server Side

74

 Using a UUID
Most of the time, our database primary keys are sequence numbers, and usually they

are created by the database themselves. This works to ensure the PK in the database is a

unique number. However, this only works if the data object we are creating only needs

to know that PK at the time of insertion. What if you are using a read/write CQRS system

(like we are going to in a few chapters), or what if you have one system talking to another

system, which is often the case with microservices, and they need to know the PK of the

object to be stored before it’s stored? Let’s examine our choices:

 1. If System 1 has data, it creates a local sequence PK for that data;

when it calls System 2, then System 2 can store System 1’s ID in a

column on the database. That way when System 1 needs to query

System 2, it has something it knows how to talk.

 2. In a reverse situation, System 2 can respond with its PK and

System 1 can store it.

 3. Use UUIDs.

The first two are utterly complex and sloppy; what we really want to do is use the

SAME PK, but how do we do that with a sequence id that may not be the same? The

answer is Unique Universal Identifiers (UUIDs). UUIDs give us the ability to transmit

data and store it back and forth. In our use case, we are going to store our media files in

our upload_svc and then transmit the data including the UUID to the retrieval_svc so

that we always have a correlation between the two.

Please note that we will be keeping the comment’s PK as a serial ID since the way it

stores its data is only via the retrieval_svc.

UUIDs work very well with cargo, and there is a good crate to make UUIDs work,

so the process to have our database use UUIDs is quite simple. Step 1 in Listing 2-39

will be to change the primary key from serial to UUID; UUID is a type in Postgres, so no

customizations are needed.

Listing 2-39. Setting our primary key for the table

CREATE TABLE media_datas (

 id UUID PRIMARY KEY,

Chapter 2 Server Side

75

However, we do have to slightly change our configurations to let diesel know we

want to use a UUID sql type. In your diesel dependency, you will have to activate the

UUID feature as well as bring in the UUID crate, although the latter is simply so we can

create UUIDs. (Note: In the previous example, the uuidv07 is also listed; I am showing it

in Listing 2-40 to illustrate the specific feature that was needed for it.)

Listing 2-40. Activating the UUID in our diesel app and adding the UUID crate

diesel = { version = "^1.4.4", features = ["postgres", "uuidv07"] }

uuid = { version = "^0.8.0", features = ["serde", "v4"] }

At this point when your schema file is generated, it should now use the UUID diesel

trait; I did run it with everything on there since it’s a final copy, but you would have

needed the uuid trait to get it to fully work. In Listing 2-41, we have it.

Listing 2-41. The UUID being reflected in our schema.rs file

media_datas (id) {

 id -> Uuid,

Finally, the last thing to do is to use it. If you reference Listing 2-18, you will notice

one of the features we brought in was v4; this is because the UUID crate will let you use

any versions 1–5 for the UUID. The v3 and v5 are used to generate a UUID off a given

name; however, with video and file upload, we can’t guarantee uniqueness; we just want

pseudo-random numbers, for which v4 is our best choice to do. For our application, we

will have a bit of a unique use case; since we are using the UUID in upload_svc, we will

have to instantiate the UUID and then convert it to a string for the filename; we can then

use that identifier when creating our JSON and pass it to the retrieval_svc. In Listing 2-42,

we see the UUID being instantiated and passed to our save_data function.

Listing 2-42. Manual modifications to the schema

let uuid = Uuid::new_v4();

debug!("File to save :: {:?} to {}", filename, uuid);

 match save_data(&uuid, &data, &filename,uuid.to_hyphenated().to_string()) {

Now that we have our database all designed (or as much as we need for now), let’s

see how we integrate it into our iron application.

Chapter 2 Server Side

76

 Integrating with Our Application
We have gone over how to use diesel, creating our own schemas and implementing

queries we need for our schemas. We also have gone over examples for the queries in

our application and how to use them. Now we actually need to glue that all together

with iron. Simply put, we could use the code we’ve been writing and use it directly with

the data coming in; it works fine. However, if you notice for every call, we have been

calling the get_connection which instantiates a new connection each time. If you have

ever written web applications, you will know most of the time we use a connection

pool. There are a number of reasons for this; the first is a database itself has a limited

number of connections, and this way we can control it through some central process in

the application. The other is of course performance, so we are not spending the time to

create a new connection each time. I am going to step you through creating your own

middleware to handle pool connections, and after we will use a slightly out-of-the-box

solution. Both examples will use the r2d2 crate (https://github.com/sfackler/r2d2);

this is a very powerful crate that is designed to create a connection pool in rust for a

variety of different backend and frameworks. There is support for all the major databases

as well as pooled connections for many of the NoSQL databases. The most up-to-date

list will be at the github repo I mentioned previously. But our custom and the solution

we use will both make use of r2d2.

 Diesel Write Your Own Middleware

We went over creating middleware when we were talking about iron; the concepts and

steps will also apply here but with a bit more complex example. Let’s first define our

goals:

 1. Create a connection pool to the database using r2d2 as the

mechanism.

 2. Expose this connection in our controller layer of the application

without having to instantiate anything directly.

To do this, I am going to work our way back from the controller, to creating the

middleware, to creating the database connection.

I initially started this example because the iron_diesel_middleware did not work

with the latest versions of diesel. However, the author is very open to patches; and

after I got done writing this chapter, he incorporated my patch. Thus, we are still going

Chapter 2 Server Side

https://github.com/sfackler/r2d2

77

over how to create it because it’s a very good use case and learning experience, but this

code will not be in the full example application since the latest version of the plugin

incorporates the necessary fixes.

Let’s start. First up in Listing 2-43, the most common way to extend your middleware

to add features is to add on to the iron::Request, through the extensions attribute also

directly on the request itself. This is somewhat counter-intuitive for those coming from

languages that have injection everywhere, but injection is expensive and problematic;

adding to the request we can guarantee more compile-time use and memory allocations

needed for it. Let’s call the database connection we want as db_conn.

Listing 2-43. Exposing the middleware on the request

use middleware::database::DieselReqExt; ①

pub fn comment(req: &mut Request) -> IronResult<Response> {

 let conn: PgPooled = req.db_conn(); ②
 insert_into_db("test", &conn); ③

 Ok(Response::with((status::Ok, "OK")))

}

 ➀ The trait applied to allow db_conn to be on the request.

 ➁ We are retrieving the database connection from db_conn on the req.

 ➂ We pass in the connection received to a function to process the

database insert.

As you can see, this makes our controllers clean and concise with little extra work

needed, allowing our functions to be readable controllers. Let’s go into the next step in

Listing 2-44; we need to instantiate the middleware component and add the middleware

component to the chain.

Listing 2-44. Instantiating the middleware

// Setup our middle ware

let diesel_middleware = DieselMiddlewareConnPool::new("DATABASE_URL"); ①

// Link the chain with our middleware object

let mut chain = Chain::new(mount);

chain.link_before(diesel_middleware); ②

Chapter 2 Server Side

78

 ➀ The first step is to instantiate the middleware from the

DieselMiddlewareConnPool.

 ➁ Since we need to have the connection before the function, we set it

via link_before.

Now we get to the meat and the potatoes creating the actual middleware struct,

DieselMiddlewareConnPool. The struct is pretty simple; it just needs to contain a

connection pool. This connection pool is what gets passed back into the db_conn being

called by the request in our controller. The simple struct is in Listing 2-45.

Listing 2-45. Struct for the DieselMiddlewareConnPool

pub struct DieselMiddlewareConnPool {

 pool: PgPool

}

After this, there are three extra steps we need to take all performing operations on

this struct to make. There are essentially three remaining steps we need to do to make

everything work:

 1. Have an implementation that will create a connection to the

connection pool.

 2. Have the DieselMiddlewareConnPool inserted for the

BeforeMiddleware trait so that the chain knows when to fire it off.

 3. Using a trait, add a function db_conn to the Request that will pull

in the DieselMiddlewareConnPool and return it to the controller.

Implementing the Connection Pool

Let’s start with creating the connection pool; this part in Listing 2-46 is super easy; we

are just going to implement our struct and set a new that passes in as an environmental

string that we should find the connection pool on. From there, we can establish our

connection pool.

Chapter 2 Server Side

79

Listing 2-46. Implements the new on our struct to create the connection pool

impl DieselMiddlewareConnPool {

 /// Creates a new pooled connection to a sql server

 pub fn new(connection_env_var: &str) -> DieselMiddlewareConnPool {

 let pg_pool: PgPool = establish_connection_pool(connection_env_var);

 DieselMiddlewareConnPool {pool: pg_pool}

 }

}

The connection pool method in Listing 2-47 will look much like the establish

connection we created earlier, except adding the connection pool manager.

Listing 2-47. Code to actually create the connection pool

pub type PgPool = Pool<ConnectionManager<PgConnection>>; ①

pub fn establish_connection_pool(db_env_var: &str) -> PgPool {

 dotenv().ok();

 let database_url = env::var(db_env_var)

 .expect("DATABASE_URL must be set");

 let manager = ConnectionManager::<PgConnection>::new(database_url);

 // Get the pooled connection manager

 Pool::new(manager).expect("Failed creating connection pool") ②
}

 ➀ We set a new type to point to a much longer type, because simply that

would be too much to type when setting in each function.

 ➁ This is the main addition from what we created before, and it puts the

connection manager inside the pool.

Adding the Middleware

Next we need to add to the BeforeMiddleware in Listing 2-48 a before function

implementation.

Chapter 2 Server Side

80

Listing 2-48. Creating our BeforeMiddleware

pub struct Value(PgPool);

// to use the Value we need to have a typemap implementation for the Diesel

Middle ware pool

// implement the trait

impl typemap::Key for DieselMiddlewareConnPool { type Value = Value; } ①

// Our middleware we are creating

// inspired by https://github.com/darayus/iron-diesel-middleware/blob/

master/src/lib.rs

// and git@github.com:DavidBM/rust-webserver-example-with-iron-diesel-

r2d2-serde.git

impl BeforeMiddleware for DieselMiddlewareConnPool {

 fn before(&self, req: &mut Request) -> IronResult<()> {

 req.extensions.insert::<DieselMiddlewareConnPool>(Value(self.pool.

clone())); ②
 Ok(())

 }

}

 ➀ Using the typemap::Key to store the value Pool object.

 ➁ Inserting the value object on the req.extensions.

You can see here is where we insert on the req.extentions a clone of the connection

pool. We need to perform the clone because this is going to be called many times, and

if we kept trying to use the same object, we would be trying to borrow it constantly and

would get a cannot mot out of borrowed content error, since you can’t have the same

object borrowed and never returned (much like a library book).

Adding a Method to Request

Most of this you have seen before via the timer middleware we wrote, but this the coup

de grace to make it a bit fancier and easier to use. If you recall in Listing 2-43 you saw on

the controller, we used a trait DieselReqExt before the controller call; here is where we

create and define that trait.

Chapter 2 Server Side

81

Listing 2-49. Adding the trait DieselReqExt and implementing it on the Request

pub trait DieselReqExt {

 fn db_conn(&self) -> PgPooled;

}

impl<'a, 'b> DieselReqExt for Request<'a, 'b> {

 fn db_conn(&self) -> PgPooled {

 let pool_conn = self.extensions.get::<DieselMiddlewareConnPool>().

expect("Diesel MW Conn Pool Retrieval");

 let &Value(ref pool) = pool_conn;

 return pool.get().expect("Failed to get DB Connection in the

request");

 }

}

We start off by creating the trait with one function db_conn; then in the following

section, we implement that trait for the Request so that when applied in context with the

trait, we have a connection pool.

 Diesel Middleware

There you have it, a clean controller that allows us to create connection pools on the fly.

Of course, the most logical thing you’d think to yourself is to wrap this up into a crate

and make it easy to use for each project. Luckily, there is one project out there from

@darayus that does just that (https://github.com/darayus/iron-diesel-middleware),

called iron-diesel-middleware. However, there is a small issue with the project, in that

he makes use of the crate r2d2-diesel which was an r2d2 for diesel; that project has

since been deprecated and that code is baked into diesel and activated by adding the

r2d2 feature. What I ended up doing is forking the project and patching it to use r2d2

from diesel. It’s pretty simple to use. For the dependency, you will have to reference the

git repo like in Listing 2-50.

Listing 2-50. Add the middleware to the Cargo.toml

[dependencies.iron_diesel_middleware]

git = "https://github.com/nusairat/iron-diesel-middleware.git"

Chapter 2 Server Side

https://github.com/darayus/iron-diesel-middleware

82

Now that we have the crate, we can apply it; the structs and functions in the crate

are very similar namewise (intentional). In Listing 2-51, you can see adding the request

function.

Listing 2-51. Using the iron-diesel-middleware in our code

use iron_diesel_middleware::{DieselMiddleware, DieselReqExt};

type DieselPg = DieselMiddleware<diesel::pg::PgConnection>;

fn create_links(chain: &mut Chain, url: &str) {

 // Create the middleware for the diesel

 let diesel_middleware: DieselPg = DieselMiddleware::new(url).unwrap();

 // link the chain

 chain.link_before(diesel_middleware);

}

 More Web Framework
I wanted to jump back into the web framework world a bit more. We will do that from

time to time. But I wanted to go over a few extra crates; that is going to hopefully make

your life easier in any Rust application. Some of these are specifically for the Web, but

others are more generic and could be used for anything.

 Command-Line Parameters
As you have noticed already from using the application, we run everything from the

command line. The same will be when launching the web application or using the

application on a device. As you saw as well, we even pulled the database url from the

environmental variable; this is how we will also set things once we go to production in

future chapters with Helm, Kubernetes, and so on. This means that when we want to run

the applications, we need to use either the command line or environmental variables.

Luckily for us, there is a great tool to do command-line parsing supporting both methods.

And that’s Clap Rs (https://github.com/clap-rs/clap). Clap is a great tool, in that it

Chapter 2 Server Side

https://github.com/clap-rs/clap

83

not only allows us to pass in arguments on the command line but also allows us to pass

default values and environmental values for those arguments. This makes it great for ease

of use with development. Let’s get started by importing the clap crate in Listing 2-52.

Listing 2-52. The Cargo.toml with the clap crate

Used for Argument Matching And Applications

clap = "2.33.0"

Let’s take a look at a small example in Listing 2-53 to see the power it provides and all

the options allowed for it for each command.

Listing 2-53. Argument matching for one argument, the port argument

use clap::{App, Arg};

use iron::prelude::*;

use iron::status;

fn main() {

 let matches = App::new("Title")

 .version(env!("CARGO_PKG_VERSION")) ①
 .about("Our description.")

 .arg(Arg::with_name("PORT") ②
 .short("P") ③
 .long("port") ④
 .takes_value(true) ⑤
 .required(true) ⑥
 .env("PORT") ⑦
 .default_value("3000") ⑧
 .help("The value to start the server on"))

 .get_matches();

 let port = matches.value_of("PORT").unwrap(); ⑨

 Iron::new(|_: &mut Request| Ok(Response::with((status::Ok, "Hello World

Rust"))))

 .http(format!("localhost:{}", port));

}

Chapter 2 Server Side

84

 ➀ This sets the version that we use from the Cargo file.

 ➁ We will use this name to reference the call later.

 ➂ When calling from the command line, this is the short variable.

 ➃ When calling from the command line, this is the long variable.

 ➄ Specifying whether the value will be supplied at runtime.

 ➅ Whether or not this value is required.

 ➆ The environmental variable that can be supplied with the PORT.

 ➇ The default value to use; really useful for development.

 ⑨ How to actually retrieve the values; the value_of uses with__name set

of PORT.

Right now if you run that application, the application will start up normally. But what

happens if you turn off the default flag? You will get an error that is actually useful. Let’s

view the error in Listing 2-54.

Listing 2-54. Showing the error when there is no default value

error: The following required arguments were not provided:

 --port <PORT>

USAGE:

 cli --port <PORT>

You can rerun this example by passing in --port 3000 to the executable binary.

Doing this in development mode is a bit different than if you had the compiled rust

binary. Listing 2-55 shows how to run the command from cargo run.

Listing 2-55. Running the clap locally

➜ cargo run --bin cli -- --port 3000

We will make great use of this as we go along for any external services that may

require configurations that can change. For us about every argument we use will be the

matcher, with a combination of string and integer values depending on the argument.

Some of our applications like retrieval_svc will have nine attributes to match. If you

look back on Listing 2-53, adding eight more attributes could make that very ugly very

Chapter 2 Server Side

85

fast. What we are going to do is set up each argument in its own module under the args

module. Thus, the port attribute will be stored in a file like in Listing 2-56; here we apply

constants to the values and settings. Each of our arguments will have a similar method.

Listing 2-56. Argument matching for the PORT, in file src/args/port.rs

use clap::Arg;

pub const HELP: &str = "The Port the App is bound to ";

pub const LONG_HELP: &str = "\

Our Port for our application";

pub const LONG: &str = NAME;

pub const NAME: &str = "port";

pub const SHORT: &str = "p";

pub const DEFAULT_VALUE: &str = "3010";

pub const TAKES_VALUE: bool = true;

pub const VALUE_NAME: &str = "PORT";

pub fn declare_arg<'a, 'b>() -> Arg<'a, 'b> {

 Arg::with_name(NAME)

 .short(SHORT)

 .long(LONG)

 .env(VALUE_NAME)

 .value_name(VALUE_NAME)

 .required(TAKES_VALUE)

 .help(HELP)

 .long_help(LONG_HELP)

 .default_value(DEFAULT_VALUE)

}

Now when we have to perform an argument matcher against nine arguments,

the code is still readable. In Listing 2-57, we have our argument matcher along with

two subcommands (this application is run twice, one to serve as an RPC and the

other to serve as rpc the other to perform automatic migrations; we will get into these

applications later). But for now, take away how much cleaner that looks.

Chapter 2 Server Side

86

Listing 2-57. Argument matching for the application, file in src/main.rs

fn start_app_and_get_matches() -> ArgMatches<'static> {

 App::new(APP_TITLE)

 .version(env!("CARGO_PKG_VERSION"))

 .author(env!("CARGO_PKG_AUTHORS"))

 .about(APP_DESCRIPTION)

 .setting(AppSettings::ColoredHelp)

 .arg(args::database::declare_arg())

 .arg(args::server::declare_arg())

 .arg(args::port::declare_arg())

 .arg(args::rpc::declare_arg())

 .arg(args::auth::declare_arg())

 .arg(args::event_store_host::declare_arg())

 .arg(args::event_store_port::declare_arg())

 .arg(args::event_store_pass::declare_arg())

 .arg(args::event_store_user::declare_arg())

 .arg(args::event_store_web_port::declare_arg())

 .subcommand(SubCommand::with_name("migration")

 .about("runs the migrations for diesel"))

 .subcommand(SubCommand::with_name("rpc")

 .about("runs the RPC server"))

 .get_matches()

}

 Error Handling
Right now, most of the way we are handling errors is we aren’t. We are using the

expect() call and letting the function just crash. However, often we want to have

customized errors for each type of error. This is out of the box possible to do with Rust

but becomes cumbersome with lots of coding. You will have to write an error for each

and track where the errors are, which becomes a bit of a pain. Introducing error_chain

(https://github.com/rust-lang-nursery/error-chain). This will allow us to more

easily create and return errors to the system. In Listing 2-58 we add our out of the box

formatting for our error.rs file.

Chapter 2 Server Side

https://github.com/rust-lang-nursery/error-chain

87

Listing 2-58. Our errors module with the error_chain! macro

use error_chain::*;

use std::result;

// We can define our error chains in here

//https://docs.rs/error-chain/0.12.0/error_chain/

error_chain! { ①

}

// Couple custom errors

pub type MyResult<T> = result::Result<T, Error>; ②

 ➀ Defining our macro necessary for the error_chain.

 ➁ A wrapper for the Error that will get returned from the chain to use in

the application.

That’s all we need now to start using the error chain; we can add in customizations

to define the custom responses for each error. This gives the developer a central area to

handle the errors that are in the application. We will be adding to this as we go along, but

for your production systems, it can be invaluable to learn the errors and trace the root

causes. We can implement this by adding .chain_err instead of an .expect to any error

calls where you want to use error_chain. In Listing 2-59 we add it to the save_text_to_file

method.

Listing 2-59. Using our chain error to add a message to the error handling

fn save_text_to_file(path: &str, name: &String, data: &String) ->

MyResult<()> {

 std::fs::write(format!("{}/{}", path, name), data)

 .chain_err(|| "unable to write to file")?;

 Ok(())

}

Chapter 2 Server Side

88

This uses the message to create a custom error. I will be using the error chain

throughout the application, sometimes more than other places. I’m not going to dive

into the application every time. Honestly, there are quite a bit of competitors in the error

space right now including snafu and thiserror that look interesting. thiserror seems

more for libraries, but snafu seems very promising (https://crates.io/crates/snafu).

 Loggers
We have used the println! macro for most of the book, but that is such a newbie thing

to do; it’s time to look at how to use a logger. Loggers are great because you can format

the levels that get displayed, format the display with time zones, thread IDs, and so

on. But most importantly, you can control those levels between development and

production so you don’t blow up your error logs. Let’s begin by bringing in the proper

crate for this. For logging, we are going to use in Listing 2-60 a log (https://github.

com/rust-lang-nursery/log) crate but also use the pretty-env-logger (https://

github.com/seanmonstar/pretty-env- logger) which helps make it look prettier.

Listing 2-60. The Cargo.toml with the logging crate

log = "0.4.8"

pretty_env_logger = "0.4.0"

env_logger = "0.7.1"

The code is pretty straightforward to write; we are setting the RUST_LOG here, but

this could also be fed in via an environmental variable, but we are allowing for a default

RUST_LOG to use while we are in development. Next in Listing 2-61, we are initiating the

pretty logger, and this will start the logging for our entire application.

Listing 2-61. Example of initializing the logger and writing log tests

use pretty_env_logger;

use std::env;

use log::*;

fn main() {

 env::set_var("RUST_LOG", env::var_os("RUST_LOG").unwrap_or_else

(|| "debug".into())); ①
 pretty_env_logger::init(); ②

Chapter 2 Server Side

https://crates.io/crates/snafu
https://github.com/rust-lang-nursery/log
https://github.com/rust-lang-nursery/log
https://github.com/seanmonstar/pretty-env-logger
https://github.com/seanmonstar/pretty-env-logger

89

 debug!("Testing Debug"); ③
 info!("Testing Info");

 warn!("Testing Warn");

 error!("Testing Error");

}

 ➀ Setting the RUST_LOG env variable needed for the logger. We can do

this externally as well.

 ➁ Initializing the pretty logger.

 ➂ Our various logger options.

The preceding code when ran produces the following output in Listing 2-62. The

logs actually color-code the different levels on the console, but that is a bit hard to see

in a black and white book; you will just have to trust me or run it on your own. All the

logs calls are to macros as you can see by the exclamation point and logging will be used

throughout the book.

Listing 2-62. Output from the logs

 DEBUG logs > Testing Debug

 INFO logs > Testing Info

 WARN logs > Testing Warn

 ERROR logs > Testing Error

Loggers are fairly simple, but we want to use them as much as possible instead

of println!; those have a habit of entering the code and never leaving till you go to

production, and now your app is spending far too much I/O time writing output due to a

println! you forgot about, whereas you can more easily control loggers output flow.

As we go along, we will add extra crates that universally help make our programming

more readable and concise.

Chapter 2 Server Side

90

 Summary
In this chapter, we set up our first iron-based microservice that integrated with the

database. This gave us RESTful endpoints to be able to query and insert into the

comments and media data tables. In addition, we had all the plumbing around logging,

error catching for a modern application. In future chapters, we will build up on this file

and add even new endpoints. In the next chapter, we will dive into the upload service

and how to upload a file and communicating that metadata back to the retrieval service.

Chapter 2 Server Side

91
© Joseph Faisal Nusairat 2020
J. F. Nusairat, Rust for the IoT, https://doi.org/10.1007/978-1-4842-5860-6_3

CHAPTER 3

File Uploading and Parsing
In the previous chapter, we went over the design for the application, including our

microservice architecture. Part of that architecture was starting the pipes to have the

upload_svc call the retrieval_svc. Majority of last chapter though, we focused on

really two things, setting up iron for the web server and creating our database to store

media files. Most of the coding focused on the retrieval service and integrating it with the

database to store comments and media data. In this chapter, we are going to expand and

dive into the upload service. We will be looking at how to upload, download, and parse

the media data. Media data often contains extra information about it that tells us track,

authors, camera use, and so on, and that is good metadata to store in the database.

Before we start coding, you should go create the upload_svc. We are not going to

build it from scratch, since you just did it. We are not going to start the upload service

from scratch. It will be your typical Iron framework application with error chain and

loggers. This should be relatively easy since you just wrote the same structure in the

previous chapter.

But what we want to dive into more is the file upload process for our IoT app – the

ability to upload the files and store them on our system as well as parsing the files

metadata for information we can feed for retrieval. We are only going to be focused

on video and still image files and processing data from those files. However, much of

the same code could be used to expand to audio and other formats. We will look at a

variety of crates that will help us parse image and video data as well as store those files.

In addition, we will also head back to the retrieval service and show how to store the

metadata from the uploaded files. In later chapters, we will show how to perform more

queries against the media data.

https://doi.org/10.1007/978-1-4842-5860-6_3#DOI

92

 Goals
After this chapter, you should learn to do the following pieces of code:

 1. Upload media files to the upload service.

 2. Parse EXIF data from an image file.

 3. Parse video data from a video file.

 4. Call the retrieval service from the upload service.

 5. Store the metadata into the database.

There are many different video and image types and quite a bit of data you can

gather and analyze when using the image and video parsers. The metadata we will get

back ranges from the camera exposure, aperture, date and time, and even GIS location

when available. We are not going to focus much on individual sections of data but treat it

as a whole; it will be up to you to perform any interesting queries or tasks on the data.

 Parsing Image Data
If you have ever taken a picture with your mobile phone or uploaded your pictures

to sites like Facebook, you will notice that the pictures often show details about the

location of the picture. Further, if you have any modern operating system installed on

your computer or viewer, they will show the metadata for any images. For my example,

I am using OSX, and when you click a picture, you will find a whole host of information

from the location to the device that took the picture, the resolution, aperture, and so on

(should be similar for Windows or Linux OS). This information can be useful for knowing

the conditions a picture was taken for learning and editing purposes. In Figure 3-1, I click

a picture I took of one of my cats.

Chapter 3 File Uploading and parsing

93

That information displayed is all stored on the picture as EXIF data.

Figure 3-1. Shows a picture of a cat with details

Chapter 3 File Uploading and parsing

94

 EXIF
But what is EXIF? EXIF stands for Exchangeable Image File Format and is the standard

that was created in 1995 which specifies the format for digital images and sound. The

EXIF structure is borrowed from the structure used by Tagged Image File Format (TIFF),

and there is overlap in structure between the standard and various TIFF formats. The

EXIF data is embedded within the image itself in a predefined structure; hence, there

are various parsers that can then parse the data out since the format is a standard. This

means we could parse the data ourselves or more easily use an existing crate that will

make it easier for us.

 Kamadak EXIF
There are quite a few EXIF cargo crates out there to pick from. This beckons the question:

which one to choose? There were two main requirements I wanted when picking the

EXIF parser:

 1. A parser that is regularly maintained (incidentally this library had

two minor increments between writing this chapter and finishing

the book)

 2. A parser that is natively written in Rust

The second was very important for performance and safety. We could have

instead called a Rust crate that wraps a C library or had the application call out to a

shell command (via std::process::Command) eww. But either of these options would

compromise the performance and safety. There was even a crate that wrapped a very

well-maintained and performant Go library. However, I wanted to avoid all this, ensure

safety, and stick to a natively written library. About the only limitation to consider when

using kamadak is that it only supports TIFF, JPEG, and HEIF (most often used by iOS)

files; however, that is fine for our use cases. Listing 3-1 references the kamadak crate.

Listing 3-1. kamadak-exif installed parser, in upload_svc/Cargo.toml

kamadak-exif = "0.5.1"

chrono = { version = "0.4", features = ["serde"] }

You will notice we also included the chrono library. The library is used for date/

time interchanges between a struct and string or long representations of date/time

Chapter 3 File Uploading and parsing

95

data. This crate follows the ISO 8601 Date and Time Format standard (www.iso.org/

iso-8601-date-and-time-format.html) and is commonly used throughout rust

crates. In addition, we included the serde feature in order to handle serialization and

deserialization of structs that have date time data. We will be using the struct DateTime

that is included in the crate to represent date/times throughout the app, but more

specifically in this chapter for the date/timestamps from the EXIF data.

 Data Structure
This parser will get a large set of data from the file; we are going to use much of that data

to store to the database but not all of it. There are more pieces of information you can

obtain if you dig deeper into the library. This is just a small subset of the data available.

We will add on to this data in later chapters; for now, Listing 3-2 reflects the tags we

actually are concerned with.

Listing 3-2. The Image EXIF data structure for image metadata, in

upload_svc/src/parsers/image.rs

#[derive(Deserialize, Serialize, Debug)]

pub struct ImageMetaData { ①
 exif_version: Option<f64>,

 x_pixel_dimension: Option<u32>,

 y_pixel_dimension: Option<u32>,

 x_resolution: Option<u32>,

 y_resolution: Option<u32>,

 date_of_image: Option<DT<Utc>>,

 flash: Option<bool>,

 make: Option<String>,

 model: Option<String>,

 exposure_time: Option<String>,

 f_number: Option<String>,

 aperture_value: Option<f64>,

 gps_point: Option<Point>,

 altitude: Option<f64>,

 speed: Option<f64>,

 media_item_id: Uuid,

}

Chapter 3 File Uploading and parsing

https://www.iso.org/iso-8601-date-and-time-format.html
https://www.iso.org/iso-8601-date-and-time-format.html

96

impl ImageMetaData {

 pub fn empty(id: Uuid) -> ImageMetaData {

 ImageMetaData {

 exif_version: None,

 x_pixel_dimension: None,

 y_pixel_dimension: None,

 x_resolution: None,

 y_resolution: None,

 date_of_image: None,

 flash: None,

 make: None,

 model: None,

 exposure_time: None,

 f_number: None,

 aperture_value: None,

 gps_point: None,

 altitude: None,

 speed: None,

 media_item_id: id

 }

 }

}

// This is copied from diesel-geography::GeogPoint, which makes it easier

// for JSON conversion

#[derive(Deserialize, Serialize, Debug)]

pub struct Point { ②
 pub x: f64, // lon

 pub y: f64, // lat

 pub srid: Option<i32>, // spatial reference identifier

}

 ➀ The ImageMetaData structure.

 ➁ The Point data structure used to store our GIS data.

Chapter 3 File Uploading and parsing

97

The first struct is fairly self-explanatory; this has all the fields we are going to use

with a corresponding data types that we retrieve from the EXIF data. We have declared

them all optional since depending on the camera, the image, and so on, not all the fields

are reported. Resolution is a fairly common one since any image you have will by default

have some resolution (whether it’s reported in the EXIF data is dependent on the device

that recorded it).

The second struct contains our latitude and longitude information. This structure

is more strict in that we need to keep it the same fields and types that the diesel GIS is

using and when we are mimicking the structure of the GIS crate that we are going to

store to in the database. Keeping the structure identical will make it easier when we send

the JSON to the retrieval service for storage of data.

 Reading the Image
In order to read the image, we will open the image file and use a buffered reader passed

to the exif reader. In Listing 3-3, we will then use the reader to parse through various

fields.

Listing 3-3. Our parser for the image data, in upload_svc/src/parsers/image.rs

pub fn parse(media_id: Uuid, file_path: &str) -> Result<ImageMetaData,

crate::errors::Error> {

 let file = File::open(file_path).unwrap();

 let reader_result = Reader::new().read_from_container(

 &mut BufReader::new(&file));

 match reader_result {

 Ok(reader) => {

 // create the image data

 Ok(ImageMetaData { ①
 exif_version: get_float(&reader, Tag::ExifVersion),

 x_pixel_dimension: get_int(&reader, Tag::PixelXDimension),

 y_pixel_dimension: get_int(&reader, Tag::PixelYDimension),

 x_resolution: get_int(&reader, Tag::XResolution),

 y_resolution: get_int(&reader, Tag::YResolution),

 date_of_image: get_datetime(&reader, Tag::DateTime),

 flash: get_flash(&reader),

Chapter 3 File Uploading and parsing

98

 make: get_string(&reader, Tag::Make),

 model: get_string(&reader, Tag::Model),

 exposure_time: get_string(&reader, Tag::ExposureTime),

 f_number: get_string(&reader, Tag::FNumber),

 aperture_value: get_float(&reader, Tag::ApertureValue),

 gps_point: get_geo(&reader),

 altitude: get_float(&reader, Tag::GPSAltitude),

 speed: get_float(&reader, Tag::GPSSpeed),

 media_item_id: media_id

 })

 },

 Err(e) => {

 // This can happen if there is no EXIF data

 warn!("Error :: {:?}", e);

 Ok(ImageMetaData::empty(media_id))

 }

 }

}

 ➀ Creating the ImageMetaData by using data read in from the EXIF data.

Each line when initializing our data is made up of a getter for the type and a Tag. The

getter will correspond to the type you are setting to. The second field on the method will

be the type of EXIF data we are trying to retrieve. This is an enumeration that is set by the

kamadak-exif crate.

The get_float, get_int, and so on are all custom methods to retrieve the data

returning the correct type. These wrapper functions make it easier to retrieve data when

we create the structure initially. The methods will perform the conversion based on the

type of data we are accessing. In the next section, we will run through each of the parsers.

 Parsing Data Types

We are going to create four fairly standard types of parsing and two custom parsers that

are highly specific to the data we are retrieving:

• Integer

• Float

• String

Chapter 3 File Uploading and parsing

99

• Date time

• Boolean for the flash

• GIS coordinates

The first four are fairly straightforward; the GIS one is more complicated, but we

only have one set of coordinates, and the flash is unique because we are going to parse

a string text to make a boolean out of it. We will go over each of the parsers and spend

particular time on GIS parser.

Let’s start off with the more standard parsers: the float, integer, and string in

Listing 3-4.

Listing 3-4. Parsers for float, int, and string, in upload_svc/src/parsers/image.rs

fn get_float(reader: &Exif, tag: Tag) -> Option<f64> {

 reader.get_field(tag, In::PRIMARY)

 .and_then(|field| match field.value {

 Value::Rational(ref vec) if !vec.is_empty() => Some(vec[0].

to_f64()), ①
 _ => None

 })

}

fn get_int(reader: &Exif, tag: Tag) -> Option<u32> {

 reader.get_field(tag,In::PRIMARY)

 .and_then(|field| field.value.get_uint(0)) ②
}

fn get_string(reader: &Exif, tag: Tag) -> Option<String> {

 reader.get_field(tag,In::PRIMARY)

 .and_then(|field| Some(field.value.display_as(tag).to_string())) ③
}

 ➀ Our float parser matching on a rational number and converting

to float.

 ➁ The integer parser parses the value to unit.

 ➂ Using the standard display_as function and then converting the

string slice to a string.

Chapter 3 File Uploading and parsing

100

These are all fairly straightforward matchers; you will notice I used the and_then

function that will just return None if it doesn’t have a Some value for the Option.

This is a bit of a shortcut in writing instead of using your regular matcher.

Next let’s look at our date parsing function. The date we are receiving from the

system is in an ASCII format like 2013-08-30 13:06:55.933; we want to convert this to

a Coordinated Universal Time (UTC) timestamp that we can then send to the retrieval

service to be stored. In Listing 3-5, we have the date convert function.

Listing 3-5. Parses the field for a date time, in upload_svc/src/parsers/image.rs

use chrono::{Utc, DateTime as DT};

fn get_datetime(reader: &Exif, tag: Tag) -> Option<DT<Utc>> {

 use chrono::offset::TimeZone; ①

 match reader.get_field(tag, In::PRIMARY) {

 Some(field) => {

 let val = field.value.display_as(tag).to_string(); ②
 Utc.datetime_from_str(val.as_str(), "%Y-%m-%d %H:%M:%S").ok() ③
 },

 None => None

 }

}

 ➀ Include the trait in order to use the Utc.datetime_from_str.

 ➁ Retrieve the date time field as a string.

 ➂ Convert the date time from a string format to a DateTime<Utc>`.

In here, we are first retrieving the field as a string to serve as an intermediary before

we convert it to the DateTime<Utc>; the preceding format matches the same format we

are using to parse the string with. The actual parser returns a Result struct, but since

we want an Option<>, we use the ok() function at the end converting the Result to an

Option. It will convert any Result that returns without error to Some() of the unwrap(),

and any Result that is an Err will be returned as None.

The flash parsing is a bit interesting as it returns a string with details of if there was

a flash and what types. However, all I cared about was whether the flash was fired or

Chapter 3 File Uploading and parsing

101

not. In the case of the flash being fired, the display_as will return a string like “fired, no

return light detection function, forced”. We aren’t concerned with the details; all we care

about is the “fired” part of that text; hence, we will check if the string starts with “fired”; if

it does, we will return a boolean like in Listing 3-6.

Listing 3-6. Checking whether the flash was fired, in upload_svc/src/parsers/

image.rs

fn get_flash(reader: &Exif) -> Option<bool> {

 match get_string(&reader, Tag::Flash) {

 Some(flash) => {

 Some(flash.starts_with("fired"))

 },

 None => None

 }

}

 Parsing GIS

The geographic information system (GIS) was first thought up in 1968 by Roger

Tomlinson as a system to track the land capability in rural Canada. It wasn’t untill 1986

though that people started using GIS for personal computers, and by the 20th century,

this exploded even more with the Internet and the needed ability to view and analyze

GIS data. Today it is ubiquitous in our modern life, and some governments around the

world use it to know everything their citizens do. We will use it for more innocuous

purposes of being able to determine where our pictures or videos where taken.

Let’s start with retrieving the data. The end goal that is needed is to store the data

into the database that has GIS support. The Postgres GIS database we installed in the

previous chapter will then allow (when stored correctly) us to do queries based on the

location. The format the database wants for GIS is a latitude and longitude decimal

degrees; however, that is not the format we are retrieving from the exif crate. The crate

is going to return the degrees, minutes, seconds, and reference (N,S,E,W) of the image

location. We will need to convert it from degrees, minutes, seconds (DMS) to decimal

degrees. When converted, 1 degree 0 minutes 0 seconds is equal to 1.0. Each 60 minutes

you will have another degree; hence, the degree can also be thought of as an hour when

calculating. The decimal value also makes use of positive or negative values; this is

Chapter 3 File Uploading and parsing

102

translated from the DMS using the N/S/E/W notation where North and East are positive

and South and West are negative for their corresponding latitude and longitude.

In Listing 3-7, you will see how to retrieve those objects from the EXIF data for

conversion.

Listing 3-7. Prep the DMS data for conversion to a point, in

upload_svc/src/parsers/image.rs

fn calculate_pointe(reader: &Exif, dms: Tag, dms_ref: Tag) -> f64 {

 // get latitude

 match reader.get_field(dms, In::PRIMARY) {

 Some(field) => {

 match field.value {

 Value::Rational(ref vec) if !vec.is_empty() => { ①
 let deg = vec[0].to_f64();

 let min = vec[1].to_f64();

 let sec = vec[2].to_f64();

 let ref_factor = calculate_ref(&reader, dms_ref);

 convert_point(deg, min, sec) * ref_factor

 },

 _ => 0.0

 }

 },

 None => 0.0

 }

}

/// Convert longitude values that are in the western hemisphere or

/// latitude values that are in the southern hemisphere to negative decimal

degree values.

/// f64 cause we are going to multiply it

fn calculate_ref(reader: &Exif, dms_ref: Tag) -> f64 {

 match get_string(&reader, dms_ref) {

 Some(field) => {

 match (field.as_ref()) { ②
 "N" => 1.0,

 "S" => -1.0,

Chapter 3 File Uploading and parsing

103

 "E" => 1.0,

 "W" => -1.0,

 _ => 1.0

 }

 },

 None => 1.0

 }

}

 ➀ The DMS comes in from the exif crate as a vector in the order of

degree, minutes, seconds.

 ➁ Calculating the reference factor, North and East are always positive

numbers, and South and West are negative numbers.

Listing 3-8 shows how we calculate it for one decimal degree. The way one converts

from DMS to decimal degrees is rather simple if we keep in mind 1 degree is equal to

one hour which is equal to 60 minutes or 3600 seconds. Thus, the formula is Decimal

Degrees = degrees + (minutes/60) + (seconds/3600).

Listing 3-8. Final degree min sec conversion to a point, in

upload_svc/src/parsers/image.rs

fn convert_point(deg: f64, min: f64, sec: f64) -> f64 {

 (deg + (min / 60.0) + (sec / 3600.0)) ①
}

 ➀ Using the formula we discussed earlier to convert DMS to DD.

Now that we have everything to do the conversion, Listing 3-9 shows how to combine

this into one set.

Listing 3-9. Converts our GEO coordinates into a GIS DD point, in

upload_svc/src/parsers/image.rs

fn get_geo(reader: &Exif) -> Option<Point> {

 let latitude = calculate_pointe(&reader, Tag::GPSLatitude,

Tag::GPSLatitudeRef);

 let longitude = calculate_pointe(&reader, Tag::GPSLongitude,

Tag::GPSLongitudeRef);

Chapter 3 File Uploading and parsing

104

 if latitude == 0.00 || longitude == 0.0 {

 None

 }

 else {

 Some(Point {

 x: longitude,

 y: latitude,

 srid: None

 })

 }

}

We retrieve the latitude and longitude and then set the point with longitude first and

latitude second so the DMS value we convert will look like [37.39, -15.25].

 Parsing Video Data
Video data is not like image data where there is embedded EXIF data to read on the file;

this is partially due to the nature of videos. Videos aren’t one static image but a collection

of frames and have data move along buried in each track and section that can be parsed.

Hence attributes of the data you have could be adjusted along the video’s timeline. Much

of that data is about the video itself: the size, the duration, the length and height, and the

codecs. We mostly use the data to feed to video players to know how to read and render

the data to the user, since different codecs require different ways to output the audio

and video. In addition, these parsers can often have header data that they can store extra

information like your GIS coordinates or other user-specific information. This is useful

for your mobile device to be able to tag where this video has taken.

The nature of creating video parsers is not easy; there is not a huge selection to

choose from. However, there is one, and it’s an amazing one as in Listing 3-10. As you

may recall, Rust started as Mozilla project, and because of that, there is a nice mp4parser

to get track metadata for Firefox, and it’s also open sourced (https://github.com/

mozilla/mp4parse-rust). We will be using this parser to parse our track and other data.

Unfortunately, this parser does not parse out some of the other misc header data like GIS

data. This is unfortunate, but maybe someone with some free time reading this book will

dive into that fix (hint hint).

Chapter 3 File Uploading and parsing

https://github.com/mozilla/mp4parse-rust
https://github.com/mozilla/mp4parse-rust

105

 Mp4Parser
Let’s start by referencing the mp4 parser in our Cargo.toml.

Listing 3-10. MP4Parser, in upload_svc/Cargo.toml

mp4parse = "0.11.2"

 Our Data Structure
Before we start parsing, let’s figure out what kind of data we will pull for the videos. Like

the image parsing, there is quite a bit of data available from the parser to retrieve. We are

only concerned with a small subset since we are using the data more for analysis and not

information related to playback. Most of the data we are going to retrieve is around the

video and audio quality, size, and so on. On the video side, we will retrieve the following:

• Duration – In milliseconds of the video

• Width – The width of the video display in pixels

• Height – The height of the video display in pixels

• Codec – A string representation of the codec used to encode the video

And for the audio, we will retrieve two fields related to audio quality:

• Duration – The length of time the audio track is for

• Codec – A string representation

We represent all of this data in a VideoMetaData struct in Listing 3-11.

Listing 3-11. The VideoMetaData structure, in upload_svc/src/parsers/video.rs

#[derive(Deserialize, Serialize, Debug)] ①
pub struct VideoMetaData { ②
 video_duration: Option<u64>,

 video_width: Option<u32>,

 video_height: Option<u32>,

 video_codec: Option<String>,

 audio_track_id: Option<u32>,

 audio_codec: Option<String>,

Chapter 3 File Uploading and parsing

106

 media_item_id: Uuid,

}

impl VideoMetaData { ③
 fn new(id: Uuid) -> VideoMetaData {
 VideoMetaData {

 video_duration: None,

 video_width: None,

 video_height: None,

 video_codec: None,

 audio_track_id: None,

 audio_codec: None,

 media_item_id: id,

 }

 }

}

 ➀ Serialize and Deserialize will be necessary later when we want to

serialize this to a JSON object to send to retrieval service.

 ➁ The VideoMetaData struct and its constituent parts.

 ➂ The implementation to create a new structure.

Here we also default everything to optional since we are not sure what data will be

provided depending on the video type. Additionally, the way we are going to parse the

data is by iterating over each track to find the information relative at each point, so at

initialization of the data, we won’t have all the data unless we set them to intermediate

variables. This is unlike the image data where it was easy to create the data in one

method. Thus, we are creating a new to initialize all data to None to start with.

 Reading the Video
Like our image parser, we are going to start with passing the path to the file in Listing 3- 12;

this will allow this module to be more self-contained if we ever want to use it for other

purposes. Then the mp4parse crate will handle the parsing of the file into the context

object.

Chapter 3 File Uploading and parsing

107

Listing 3-12. Initializing the reading of the file, in upload_svc/src/parsers/video.rs

pub fn parse(uuid: Uuid, file_path: &str) -> Result<VideoMetaData,

crate::errors::Error> {

 use crate::errors::ErrorKind::Mp4Parse;

 let mut file = File::open(file_path)?;

 let mut context = MediaContext::new(); ①
 match mp4parse::read_mp4(&mut file, &mut context) { ②
 Ok(_) => {

 // return the meta data

 Ok(create_meta_data(uuid, context)) ③
 },

 Err(e) => {

 warn!(“Error reading Mp4 : {:?}”, e);

 // return a blank object

 Ok(VideoMetaData::new(uuid))

 }

 }

}

 ➀ Create a new MediaContext object to store the output from reading

the data.

 ➁ Parser that reads in the data from the file and stores it into the media

context.

 ➂ We pass the object to create the metadata.

Allowing the read_mp4 to perform the parsing allows the crate to optimize the

parsing of large files and not our code.

Next in Listing 3-13, we will take the filled context object and precisely retrieve the

data that we want from the video metadata to fit our VideoMetaData model. A video file

often contains tracks on top of each other; video and audio are actually two different

tracks that then get played together. The context will thus contain many tracks, each with

different types of data, so we need to parse and set our VideoMetaData accordingly.

Chapter 3 File Uploading and parsing

108

Listing 3-13. Our video data parsing, in upload_svc/src/parsers/video.rs

fn create_meta_data(uuid: Uuid, context: MediaContext) -> VideoMetaData {

 info!("Movie extend box : {:?}", context.mvex);

 let mut vmc = VideoMetaData::new(uuid);

 check_tracks(context.tracks, vmc)

}

fn check_tracks(tracks: Vec<Track>, mut vmc: VideoMetaData) ->

VideoMetaData {

 for track in tracks { ①
 match track.track_type {

 mp4::TrackType::Video => { ②
 vmc.video_duration = Some(track.duration.unwrap().0);

 // Reference is here if not we will get a borrow err below

 match &track.tkhd {

 Some(tkhd) => {

 vmc.video_width = Some(tkhd.width);

 vmc.video_height = Some(tkhd.height);

 },

 None => {}

 };

 vmc.video_codec = retrieve_codec(&track);

 },

 mp4::TrackType::Audio => { ③
 vmc.audio_track_id = Some(track.track_id.unwrap());

 vmc.audio_codec = retrieve_codec(&track);

 },

 mp4::TrackType::Metadata | mp4::TrackType::Unknown => {}

 };

 }

 vmc

}

Chapter 3 File Uploading and parsing

109

 ➀ Iterating through each track to parse.

 ➁ Retrieving the video data.

 ➂ Retrieving the audio data.

And finally as part of that, we have a separate function that helps us parse the codec

in Listing 3-14.

Listing 3-14. Retrieving the audio codec, in upload_svc/src/parsers/video.rs

fn retrieve_codec(track: &Track) -> Option<String> {

 match &track.stsd {

 Some(stsd) => {

 match stsd.descriptions.first() {

 Some(v) => {

 match v {

 mp4::SampleEntry::Video(v) => {

 Some(stringify!(v.codec_type).to_string()) ①
 },

 mp4::SampleEntry::Audio(v) => {

 Some(stringify!(v.codec_type).to_string()) ②
 },

 _ => {

 None

 }

 }

 },

 None => {

 None

 }

 }

 },

 None => {

 None

 },

 }

}

Chapter 3 File Uploading and parsing

110

 ➀ Retrieve the video codec.

 ➁ Retrieve the audio codec.

With these video parsing functions, we have generated all the metadata that we need

for the VideoMetaData object; we will use the video and image parsers in the next section

to parse the incoming files.

 File Uploads
We now have all our parsers created and ready to be used in their modules. The next step

is going to be uploading the file, parsing the data, and sending it to the retrieval service

for storage in the database. We are looking at four essential steps:

 1. Upload the various types of data.

 2. Determine the parser to use for the data by the file type.

 3. Parse the file to retrieve the metadata.

 4. Send the data to the retrieval service in JSON format.

 Upload File
With all the requests we were sending over in the last chapter, these were simple HTTP

requests. We had a set of JSON and sent it to the endpoint. Most of the requests you

create on servers follow this model, your retrieval of data by search field and your

updating of data or deleting of data. This works because they are all the same set of

data. You have one set of JSON or set of request parameters. When transmitting files,

it becomes different. We are sending different types of data; we are sending plain http

request information about the item, but also sending binary data. We can’t send data the

same way as we normally would; instead, we have to use a concept called multipart.

Multipart is part of the W3C spec defined to be used when sending “one or more

different sets of data are combined in a single body”.1 And when we are sending image or

1 www.w3.org/Protocols/rfc1341/7_2_Multipart.html

Chapter 3 File Uploading and parsing

http://www.w3.org/Protocols/rfc1341/7_2_Multipart.html

111

video data, both of which are binary we are doing just that. We are going to send to the

server the file and also the UUID of the device the file originated from (in addition, there

is other default metadata that is sent, but we won’t be covering that; this is standard for

all HTTP request).

But the important thing to take away is that with file upload, you won’t be able to use

your previous way of retrieving requests. To help with this, we will use another crate, the

multipart crate, which will assist in uploading files. This crate will take a file and allow

us to return it as textual data, a file, or byte array depending on how the file upload was

used. In Listing 3-15 is the crate we are using to upload the file.

Listing 3-15. The multipart file uploader, in upload_svc/Cargo.toml

For file uploading

multipart = { version = "0.16.1", features = ["iron"] }

You will notice that since this multipart uploader can be used with various web

frameworks, we have to turn on the feature for iron. Now that we have the feature

turned, let’s look how we parse and access the data.

In addition to being able to upload the file, point #4 was that we wanted to send the file

to the retrieval_svc, and to do that, we are going to add the reqwest crate in Listing 3-16

which will allow us to send HTTP requests from upload_svc to retrieval_svc to store the

metadata in the database.

Listing 3-16. The crate used to send HTTP requests, in upload_svc/Cargo.toml

reqwest = {version = "0.10.4", features = ["blocking", "json"] }

http = "0.2.0"

At this point, we have all the crates we are going to need to code this. Because this

could be called from the Raspberry Pi, I’ve decided to make it an easier REST quest via

Iron. Let’s start with the action method that is going to receive the request. In Listing 3-17

is the upload function, and two pieces of data are submitted to us:

 1. Device Id – The unique id of the Raspberry Pi this originated from

 2. Multipart file – The uploaded video or image

Chapter 3 File Uploading and parsing

112

Listing 3-17. The upload request that our router has mapped to, in

src/actions/upload.rs

use params::{Params, Value, Map};

const DEVICE_ID_FIELD: &str = "device_id";

pub fn upload(req: &mut Request, retrieval_svc_url: &str)

 -> IronResult<Response> {

 use router::Router;

 let mut id: &str = req.extensions.get::<Router>().unwrap()

 .find(DEVICE_ID_FIELD).unwrap();

 let device_id = Uuid::parse_str(id).unwrap();

 info!("Upload for Device ID :: {}", device_id);

 save_multipart(req, retrieval_svc_url, device_id)

}

Next in Listing 3-18, the previous function will call save_multipart that will take

the request and get the entries from the multipart request. This could contain multiple

entries; for us, it will contain just one.

Listing 3-18. The multipart receiving the entries from the request, in

src/actions/upload.rs

fn save_multipart(req: &mut Request, retrieval_svc_url: &str, device_id:

Uuid)

 -> IronResult<Response>{

 if let Some(entries) = req.extensions.get::<Entries>() {

 debug!("{:?}", entries);

 } else {

 debug!("Not a multipart request");

 }

Chapter 3 File Uploading and parsing

113

 // In case you want to eventually make the location S3

 let location_type = LocationEnum::Local; ①

 // Save the entries for multipart requests

 if let Some(entries) = req.extensions.get::<Entries>() { ②
 debug!("-- Multi Part Requests");

 match save_entries(&entries, retrieval_svc_url, location_type,

 device_id) {

 Ok(status) => { ③
 info!("Succeeded : {:?}", status);

 Ok(Response::with((status::Ok, "OK")))

 },

 Err(e) => { ④
 error!("error saving the file {}", e);

 Ok(Response::with(status::InternalServerError))

 },

 }

 } else {

 Ok(Response::with(status::NotFound)) ⑤
 }

}

 ➀ We will be saving the file locally as opposed to an S3 bucket.

 ➁ Gets the entries that are added to by the middleware.

 ➂ Returns OK if the entries were processed and saved successfully.

 ➃ A 500 internal server error if the entries were not able to be saved.

 ➄ A 401 if there were no entries passed back.

The multipart crate is a middleware crate that stores the entries on the req.

extensions. Next in Listing 3-19, save_entries we iterate through the list of entries. This

function will go through the entries and allow us to parse out the multi-file uploads.

Chapter 3 File Uploading and parsing

114

Listing 3-19. The multipart parser that will iterate and process the entries,

in src/actions/upload.rs

use std::path::PathBuf;

fn save_entries(entries: &Entries, retrieval_svc_url: &str,

 location_type: LocationEnum, device_id: Uuid)

 -> MyResult<()> {

 for (key, value) in &entries.fields { ①
 // the file part will show up as "file" the others will be the

field name

 if key.as_ref().eq("file") {

 info!("{} / {:?}", key, value);

 for field in value {

 let filename = &field.headers.filename; ②
 let size = field.data.size(); ③
 let data = &field.data; ④

 save_data_matcher(data, filename, size,

 retrieval_svc_url, &location_type,

 device_id); ⑤
 }

 }

 }

 Ok(())

}

 ➀ Iterate through all files that have been uploaded.

 ➁ Get the filename for this entry.

 ➂ Receive the size of the data for the entry.

 ➃ Retrieve the data object itself the SavedData reference.

 ➄ Call the save_data_matcher passing in the data.

Chapter 3 File Uploading and parsing

115

Bullets 4 and 5 are the important and unique details to pay attention to here. The

SavedData is an enumeration that has three different struct tuples:

• Text – This contains a string of the file contents.

• Byte – This contains a Vec<u8> of binary contents.

• File – This contains two objects a PathBuf and the size of it stored in a

u64 size.

We now have the SaveData type, the filename, and location; we are ready to parse

this file and send it the retrieval svc. In Listing 3-20, we will call out to save_data to save

the data locally and then on successful save call send_to_retrieval_svc.

Listing 3-20. Matcher for the files ready to be processed

fn save_data_matcher(data: &SavedData, filename: &Option<String>,

 size: u64, retrieval_svc_url: &str,

 location_type: &LocationEnum, device_id: Uuid) {

 let uuid = Uuid::new_v4();

 debug!("File to save :: {:?} to {}", filename, uuid);

 match save_data(&uuid, &data, &filename,uuid.to_hyphenated().to_

string()) {

 Ok((file_saved_name, file_meta_data)) => {

 info!("Saved with MetaData :: {:?}", file_meta_data);

 send_to_retrieval_svc(retrieval_svc_url, filename, size,

 location_type.clone(), file_saved_name,

 uuid, file_meta_data, device_id);

 }

 Err(error) => {

 error!("Encountered an error saving the data {}", error);

 }

 }

}

We are creating the UUID initially here because we are going to use that as a

filename. While all our filenames should be unique coming from the Pi, I find it best to

not take the risk that they aren’t. We will thus in Listing 3-21 call the save_data passing

that id as the file_id.

Chapter 3 File Uploading and parsing

116

Listing 3-21. Processing the various SaveData enumerations, in

src/actions/upload.rs

fn save_data(uuid: &Uuid, data: &SavedData, filename: &Option<String>,

file_id: String)

 -> MyResult<(String, FileMetaData)> {

 // Match and handle the type of data we have

 match data {

 SavedData::File(file, bytes) => { ①
 info!("File data");

 debug!("Move file :: {:?}", file);

 save_file_to_file(uuid,

 retrieve_path(),

 get_extension_for_name(filename),&file_id, &file)

 },

 SavedData::Text(txt) => { ②
 info!("Text data");

 save_text_to_file(retrieve_path(), &file_id, &txt)

 },

 SavedData::Bytes(byes_data) => { ③
 // Not tested yet

 info!("Byte Data");

 save_byte_to_file(retrieve_path(), &file_id, byes_data)

 }

 }

}

// Strips the extension from the back of a file name

fn get_extension_for_name(filename: &Option<String>) -> String { ④
 match filename {

 Some(name) => {

 let x: Vec<&str> = name.split(".").collect();

 x.last().unwrap().to_string()

 },

 None => "unk".to_string()

 }

}

Chapter 3 File Uploading and parsing

117

 ➀ Process normal files.

 ➁ Process text files.

 ➂ Process byte data.

 ➃ Get the extension for the filename passed in.

This checks if the data is a file, text, or bytes. For our use, we will only fully support

the file type save for full parsing of the metadata; we won’t parse metadata from the

bytes or text type. The fourth part getting the extension will become more obvious when

we parse the file data. But before we do that, let’s quickly look at how to parse the text

and bytes; we won’t be using them much, but it’s good to know how it works for other

use cases. The various save functions will return a tuple of (String, FileMetaData). The

string is a location on the local path the file is saved to, and the second part is an enum

with a struct that is defined in Listing 3-22.

Listing 3-22. FileMetaData enum, in src/parsers/mod.rs

pub mod image;

pub mod video;

use image::ImageMetaData;

use video::VideoMetaData;

#[derive(Debug)]

pub enum FileMetaData {

 Image(ImageMetaData),

 Video(VideoMetaData),

 None

}

This enum contains structs of the parsed metadata of the files. This allows the

return to have the complete metadata of the files; the metadata that will be parsed for

ImageMetaData and VideoMetaData; we will go over their struct structure in a bit; for

now, just realize that is what is being parsed.

For reference the functions save_text_to_file and save_byte_to_file are below.

We won't be using them to create our parsing and saving but are for your own use if you

ever need to parse bytes or text from the multipart.

Chapter 3 File Uploading and parsing

118

[source,rust]

include::../code/full_example_app/upload_svc/src/actions/upload.

rs[tag=save_file2]

<1> Function to save a text data to a file.

<2> Function to save bytes to a file.

 Saving the File

In Listing 3-23, we are going to save the file that was uploaded to a specific location

in our file system. Interestingly enough, we do not have to do anything to process the

file upload; as part of the multipart process, it has already uploaded the file to our file

system, but it’s not in a permanent location, so we are going to move it to a new spot

using the format of <UUID>.<file_extension> using the information we retrieved

earlier.

Listing 3-23. Function to saving the file data, in file src/actions/upload.rs

fn save_file_to_file(uuid: &Uuid, path: String, extension: String, name:

&String, file_path: &PathBuf)

 -> MyResult<(String, FileMetaData)> {

 use crate::errors::ErrorKind::NoMetaData;

 info!("Save to file {}, {}, {:?}", path, name, file_path);

 // need to do this in 2 steps so we can have the memory saved longer

 //let file_name = format!("{}", name, extension);

 let path_to_save_name = format!("{}/{}.{}", path, name, extension);

 let path_to_save = Path::new(&path_to_save_name);

 info!("Save from : {:?} to {:?}", file_path, path_to_save);

 std::fs::copy(file_path, path_to_save)

 .chain_err(|| "unable to write to file")?;

 match parse_metadata(uuid, extension_type(extension),

 path_to_save.to_str().unwrap()) { ①
 Ok(metadata) => Ok((name.clone(), metadata)), ②

Chapter 3 File Uploading and parsing

119

 Err(err) => Err(NoMetaData.into()) ③
 }

}

fn extension_type(extension: String) -> FileType{ ④
 debug!("Extension :: {}", extension);

 match extension.to_lowercase().as_str() {

 "tiff" => FileType::Image,

 "jpg" => FileType::Image,

 "jpeg" => FileType::Image,

 "mov" => FileType::Video,

 "mp4" => FileType::Video,

 "m4v" => FileType::Video,

 _ => FileType::Unknown

 }

}

 ➀ Call the metadata parser with the file information.

 ➁ When retrieving the metadata, we return it with the filename in a

result object.

 ➂ Return an error if we are unable to parse the metadata.

 ➃ Return a FileType enumeration based on the extension type.

There are better ways to determine file types, mainly by reading the file headers to

determine if it’s REALLY a particular type. But for this level, we are going to just enforce a

policy of the extension names being correct.

The FileType can be of three types: Image, Video, or Unknown; the first two we will

perform parsing on. We have the FileType defined in Listing 3-24.

Listing 3-24. Definition of the file type, in file src/actions/upload.rs

#[derive(Debug)]

enum FileType {

 Image,

 Video,

 Unknown

}

Chapter 3 File Uploading and parsing

120

The next step is to parse the metadata; the two pieces of information we need to do

this are the path to the file to parse and the type of parse we want to run against it. The

extension method helps us in calculating which parser to use. The other item to take

note is our error. This is a custom error we define in our errors.rs file as part of the

error-chain crate. But now we are ready to parse the data.

 Creating the Metadata
In the previous sections of this chapter, we created the code to parse the metadata; in

here, we will only have to call the parsers based on the file type. In Listing 3-25, we call

our parsers.

Listing 3-25. Call our parsers in the other modules, in file src/actions/upload.rs

use crate::parsers::image::parse as image_parse; ①
use crate::parsers::video::parse as video_parse;

use crate::errors::ParseResult;

fn parse_metadata(uuid: &Uuid, file_type: FileType, path: &str) ->

ParseResult<FileMetaData> {

 use crate::errors::ErrorKind::NoMatchingParser;

 info!("Parse Meta Data :: {:?}", file_type);

 match file_type {

 FileType::Image => Ok(FileMetaData::Image(image_parse(uuid.

clone(),path)?)), ②
 FileType::Video => Ok(FileMetaData::Video(video_parse(uuid.clone(),

path)?)),

 // in theory we could try and see if either video or image could

parse this

 // since it could be just a bad extension but correct file headers

 FileType::Unknown => Err(NoMatchingParser.into())

 }

}

 ➀ Imports our parser modules to be used.

 ➁ Parses the metadata for the application.

Chapter 3 File Uploading and parsing

121

At this point through all the methods we have covered, we have our file stored on the

file system, and we have the metadata created for that. All that is left is to create an object

to send to the retrieval service.

 Upload File
If you remember back to Listing 3-20, we mentioned we’d circle back to send_to_

retrieval_svc; well at this point with the file stored, the metadata parsed the functions

will return, and as long as they are successful, we will call send_to_retrieval_svc.

We are going to take the metadata created earlier and convert it to a struct of

FileUpload that will then be sent to retrieval_svc. The FileUpload is defined in

Listing 3-26.

Listing 3-26. The struct of the data we will send to the retrieval service

// Mimics the Enums in Retrieval Svc

#[derive(Deserialize, Serialize, Debug, Clone)]

pub enum MediaEnum {

 Image,

 Video,

 Unknown,

}

#[derive(Deserialize, Serialize, Debug, Clone)]

pub enum LocationEnum {

 S3,

 Local

}

#[derive(Deserialize, Serialize, Debug)]

struct FileUpload {

 id: Uuid,

 name: String,

 media_type: MediaEnum,

 location: String,

 location_type: LocationEnum,

 size: u64,

 image_data: Option<ImageMetaData>,

Chapter 3 File Uploading and parsing

122

 video_data: Option<VideoMetaData>,

 device_id: Uuid

}

This struct contains all the parts of the file that the retrieval service needs. Much

of that we created in Chapter 2; for us, the location and UUID will be the same, but we

could always change that if the need ever arises. But the other important aspects we have

are the optional ImageMetaData and VideoMetaData that we created in the parsers.

 Send Data to Retrieval Services
Finally, let’s now create the struct and send the data over in Listing 3-27.

Listing 3-27. Creating the struct and sending over an HTTP request

use reqwest::blocking::Client;

use http::status::StatusCode;

///

/// Send the meta data to the retrieval data service.

///

fn send_to_retrieval_svc(url: &str, filename: &Option<String>, size: u64,

 location_type: LocationEnum,

 file_saved_name: String, uuid: Uuid,

 file_meta_data: FileMetaData,

 device_id: Uuid) -> MyResult<StatusCode> {

 let name = filename.to_owned().unwrap_or("none".to_string()); ①

 let location = format!("/api/media/add/{}", file_saved_name); ②

 let file_upload = match file_meta_data { ③
 FileMetaData::Image(image) => FileUpload::new_image(uuid,

 name, location, location_type, size, image, device_id),

 FileMetaData::Video(video) => FileUpload::new_video(uuid,

 name, location, location_type, size, video, device_id),

 _ => FileUpload::new(uuid, name, location, location_type, size,

device_id)

 };

 // Create the URL

Chapter 3 File Uploading and parsing

123

 let mut add_media = url.to_owned(); ④
 add_media.push_str(&ADD_MEDIA_DATA);

 info!("Send HTTP Request {}", url);

 info!("Sending Data :: {:?}", file_upload);

 send_json(add_media.as_str(), file_upload)

}

fn send_json(add_media: &str, file_upload: FileUpload) ->

MyResult<StatusCode> {

 let c = Client::new() ⑤
 .put(add_media) ⑥
 .json(&file_upload) ⑦
 .send();

 match c {

 Ok(response) => {

 // TODO : This will also return success for 500 errors

 // TODO: Check the status code and do a retry? or log the error.

 info!("Put successfully sent: {}", response.status());

 Ok(response.status())

 },

 Err(error) => {

 error!("Error sending : {:?} : error:: {:?}", add_media, error);

 Err(Http.into())

 },

 }

}

 ➀ Get the filename in a safe way; if there is none, then use none.

Chapter 3 File Uploading and parsing

124

 ➁ Append the UUID to the location string for the download. This

way, we are dictating what the URL is to retrieve it, not the retrieval

service.

 ➂ Create the FileUpload struct given the size, name, and location, and

adjust based on if we supplied image or video data.

 ➃ The URL is allowed to differentiate based on environments, but the

relative endpoint will stay the same, so add that and create a URL we

can call.

 ➄ Use reqwest Client to create a URL request.

 ➅ In our case, we are calling put; this could have also been get, post, or

delete depending on the request method we wished to use.

 ➆ The .json tells the Client we are sending in a struct that we want

to convert to JSON. This is also why all our structs have implemented

Serialize and Deserialize so they can be converted to JSON.

And that was the final step in processing our files for the upload service. From

there, the file is sent to the retrieval service to be processed. But now, we have all of our

updates for this chapter that we need for the retrieval service to work.

 Storing the Metadata
At this point, we have the service we just created to send the file metadata to the retrieval

service, and we also, from the previous chapter, have the action ready to accept the

media_data. We also have the basics of the database in place that has the location, name,

and file. We are ready to start and can at least skip the basics of creating the actions. We

are going to focus on what’s missing, and that is

 1. Update the database to include the metadata.

 2. Update the structs to reflect the new data.

 3. Parse the incoming JSON into the new structures.

 4. Save the data to the database.

Let’s first start with what crates we are going to bring in to help us with these

steps. The two crates we have to bring in deal with parsing and storing the GIS data

Chapter 3 File Uploading and parsing

125

and converting the incoming JSON to a struct. In Listing 3-28, we are bringing in the

bodyparser; this will allow us to take the complete body coming in and converting it

either to a string, json, or a struct. We will only be using it here for converting the body

to a struct.

Listing 3-28. The bodyparser to convert the body

persistent = "0.4.0"

bodyparser = "0.8.0"

In addition as we mentioned previously, we need to store the GIS data in the

database. This is a special column type that we have to use; luckily, there is a crate to

wrap this and make it fairly transparent to the end user. In Listing 3-29, we will add in the

diesel-geography crate.

Listing 3-29. The diesel geographic that will work with serde parsing

diesel-geography = { version = "0.2.0", features = ["serde"] }

Let’s continue; now that we have the crates installed, we will start addressing each of

the features.

 Update the Database
We had already created the media_data table in the previous chapters; now we need to

add our metadata for the images and videos. The structure will reflect the structure we

used for the structs in the previous section. We will start with defining the video_data

in Listing 3-30.

Listing 3-30. The migration script for the video metadata

CREATE TABLE video_metadatas (

 id SERIAL PRIMARY KEY,

 video_duration numeric null,

 video_width numeric null,

 video_height numeric null,

 video_codec varchar null,

 audio_track_id numeric null,

Chapter 3 File Uploading and parsing

126

 audio_codec varchar null,

 media_item_id UUID NOT NULL references media_datas(id),

 created_at TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,

 updated_at TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP

)

This contains all the fields we used for defining the video; let’s move on to the image

data to notice the one important difference in Listing 3-31.

Listing 3-31. The migration script for the image metadata

CREATE TABLE image_metadatas (

 id SERIAL PRIMARY KEY,

 exif_version decimal null,

 x_pixel_dimension int null,

 y_pixel_dimension int null,

 x_resolution int null,

 y_resolution int null,

 date_of_image timestamp null,

 flash boolean null,

 make varchar null,

 model varchar null,

 exposure_time varchar null,

 f_number varchar null,

 aperture_value numeric null,

 location geography(point, 4326) not null, ①
 altitude numeric null,

 speed numeric null,

 media_item_id UUID NOT NULL references media_datas(id),

 created_at TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,

 updated_at TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP

)

 ➀ Geographic type used to define the endpoint.

Chapter 3 File Uploading and parsing

127

Here you see the geography type being used; if you examine the database tables, you

will also notice there is a spatial_ref_sys table from when we initialized the database.

This table contains over 3000 known spatial reference systems.

 Update the Structs
Next let’s create the struct that reflects the video and image database tables we created.

In Listing 3-32, we create the extra structs.

Listing 3-32. The extra structs for the Image and Video

use crate::database::schema::image_metadatas;

use crate::database::schema::video_metadatas;

use crate::models::media_data::NewMediaData;

use diesel_geography::types::GeogPoint; ①
use bigdecimal::BigDecimal;

//use chrono::{Utc, DateTime as DT};

//#[derive(Debug, Deserialize, Clone)]

#[derive(Insertable, Associations, Debug, Deserialize, Clone)]

#[belongs_to(NewMediaData, foreign_key="media_item_id")]

#[table_name="image_metadatas"]

pub struct Image { ②
// pub id: i32,

 exif_version: Option<BigDecimal>,

 x_pixel_dimension: Option<i32>,

 y_pixel_dimension: Option<i32>,

 x_resolution: Option<i32>,

 y_resolution: Option<i32>,

 // uses RFC3339 out of the box

 //https://serde.rs/custom-date-format.html

 //#[serde(with = "my_date_format")]

 date_of_image: Option<NaiveDateTime>,

Chapter 3 File Uploading and parsing

128

 flash: Option<bool>,

 make: Option<String>,

 model: Option<String>,

 exposure_time: Option<String>,

 f_number: Option<String>,

 aperture_value: Option<BigDecimal>,

 location: Option<GeogPoint>, ③
 altitude: Option<BigDecimal>,

 speed: Option<BigDecimal>,

 media_item_id: Uuid

}

// #[derive(Debug, Deserialize, Clone)]

//#[derive(Insertable, Queryable, Debug, Deserialize, Clone)]

#[derive(Insertable, Associations, Debug, Deserialize, Clone)]

#[belongs_to(NewMediaData, foreign_key="media_item_id")]

#[table_name="video_metadatas"]

pub struct Video { ④
 video_duration: Option<BigDecimal>,

 video_width: Option<BigDecimal>,

 video_height: Option<BigDecimal>,

 video_codec: Option<String>,

 audio_track_id: Option<BigDecimal>,

 audio_codec: Option<String>,

 media_item_id: Uuid

}

 ➀ Uses the GeogPoint from the diesel-geography crate.

 ➁ The Image metadata struct.

 ➂ The GeogPoint is our latitude, longitude location.

 ➃ The Video metadata struct.

Now that we created the extra structs, let’s look at the parent struct in Listing 3-33.

Chapter 3 File Uploading and parsing

129

Listing 3-33. The NewMediaData struct

use crate::models::metadata::{Image,Video};

use crate::database::schema::image_metadatas;

// NewMediaData has to have Deserialize/Clone to work with bodyparser

// #[derive(Debug, Deserialize, Clone)]

#[derive(Insertable, Debug, Deserialize, Clone)]

#[table_name="media_datas"]

pub struct NewMediaData{

 pub id: Uuid,

 pub name: String,

 pub note: Option<String>,

 pub media_type: MediaEnum,

 pub location: String,

 pub location_type: LocationEnum,

 pub size: i32,

 pub device_id: Uuid

}

 Parse the Incoming Data
Now let’s head back to the action and parse the data coming in from the request and

create a NewMediaData struct that we can then persist to the database. Luckily, parsing

the body is really easy. In Listing 3-34, we have the action.

Listing 3-34. The NewMediaData struct with the extra fields

pub fn add(req: &mut Request) -> IronResult<Response> {

 info!("-- add media data --");

 let json_body = req.get::<bodyparser::Json>();

 info!(">>>> JSON ::: {:?}", json_body);

 let struct_body = req.get::<bodyparser::Struct<MediaDataAdd>>(); ①

 match struct_body {

 Ok(Some(media_data)) => {

 info!("Parsed body:\n{:?}", media_data);

Chapter 3 File Uploading and parsing

130

 media_data.save(&req.db_conn()); ②
 Ok(Response::with((status::Ok, "OK")))

 },

 Ok(None) => {

 warn!("No body");

 Ok(Response::with(status::BadRequest))

 },

 Err(err) => {

 error!("Error parsing meta data :: {:?}", err);

 Ok(Response::with(status::InternalServerError))

 }

 }

}

 ➀ In the bodyparser, we pass in the struct that we want the incoming

body to create.

 ➁ Now call the add function on the media_data passing in the database

connection.

 Save the Data
The final step is saving the data; we made the call, but we need to add the

implementation to the media data to save the data. In Listing 3-35, we save the

implementation.

Listing 3-35. An impl on NewMediaData to save the data

impl NewMediaData {

 // adding the self: &Self to make it a method instead of associated

function

 // https://doc.rust-lang.org/reference/items/associated-items.html

 pub fn add(self: &Self, conn: &PgPooled) {

 use diesel::insert_into;

 use diesel::RunQueryDsl;

Chapter 3 File Uploading and parsing

131

 insert_into(media_datas)

 .values(self)

 //.get_result(&*conn)

 .execute(&*conn)

 .expect("Insertion of new media error");

 }

}

 Summary
This chapter focused on a core piece of our application, the uploading and parsing of

video and image data. We won’t actually upload the images till Chapter 11, but this

allows us to receive and process the images and have two microservices communicate

with each other. All of these techniques are usable in real-world applications as well. We

haven’t tackled it here, but combining this with what you learned in Chapter 4, you could

use the metadata to make more complex GraphQL queries.

Chapter 3 File Uploading and parsing

133
© Joseph Faisal Nusairat 2020
J. F. Nusairat, Rust for the IoT, https://doi.org/10.1007/978-1-4842-5860-6_4

CHAPTER 4

Messaging and GraphQL
In this chapter, we are going to modify an existing service and create an entirely new

service. First up, we are going to add support for message queues (MQs); as you will

learn, MQs are invaluable for communication in an IoT system. This chapter we will

set up the plumbing for a basic insecure message queue. But as we move along, we

will add security and more in later chapters. In addition, we will also discuss GraphQL,

which, if you’ve only used REST, you are in for a treat. GraphQL helps solve many of the

limitations and frustrations that come in a RESTful system.

 Goals
After completing this chapter, we shall have the following added to our app:

 1. Understand the key role message queues (MQTT) play in IoT

design.

 2. Create an MQTT service with endpoints to a health service topic

watcher that can feed into our database.

 3. Understand the need for GraphQL in our system.

 4. Implement GraphQL for the retrieval service.

This code will expand on our existing topology with the addition of our third

microservice. With this, we will have three services that can all communicate with each other.

 GraphQL
If you are not familiar with GraphQL yet, you should, and by the end of this, you will be.

There are many technologies and concepts that have changed in software over the last

20 years; some seem trendy, and others seem like we are just chasing the latest shiny

https://doi.org/10.1007/978-1-4842-5860-6_4#DOI

134

object (MongoDB being used for everything as one). GraphQL is not one of those things.

Let’s first start by talking about what it’s replacing, REST. Representational State Transfer

(REST) has become ubiquitous with creating backend HTTP applications for over a

decade now. And REST has become even more important over the last 10 years with the

advent of smart phones. Now we are required to have one backend endpoint that can

serve smart watches, smart phones, smart TVs, and websites. And this has been great for

development.

 Problems with REST
However, all of this has come with quite a bit of cost. And that cost is in traffic and

complexity. REST was designed to cut back on the complexity and the expense of

processing data, especially on the web tier. Instead of having the servers process the data

and translate the pages to HTML, we made the clients heavier. This was a smart move in

the current ecosystem where we have to handle millions and hundreds of million users.

Cloud servers cost money; a good way to reduce your cost is to reduce how much work

the cloud is doing and the size of the traffic. In fact, Netflix spends quite a bit of money

and time doing just that in the way it compresses and serves up data.

How are we affected by complexity in REST? Let’s think of a simple example using

our application. What kind of calls do we need to make?

• GET /retrieve_media/list/ – Retrieve all the media data for a given user.

• GET /retrieve_media/detail/<UUID> – Retrieve the details for a given

media data.

• GET /comments/get/<MEDIA_UUID> – Retrieve the comments for a

given media UUID.

In addition, we also have lots of puts, deletes, and so on to store the data, delete the

data, and anything we want users to do. This complexity becomes ever more difficult

in two ways: first, the sheer amount of URLs the backend team has to keep track of for

being active and for the consumers of that data to know the URLs are active and second

the details to expose and notify changes of that data. The more complex the system,

the more of a headache this becomes. The BIGGER issue is what if you are on a details

page that wants just the details, or the details and the comments. In the latter, this now

becomes two calls to the system. With single-page applications (SPAs), this can become

Chapter 4 Messaging and graphQL

135

even more annoying because you could have dozen calls to the system to get all the data.

This not only taxes the servers and increases the cost to serve the data more but slows

down the loading of the page.

 GraphQL to the Rescue
However, there is a solution, and that solution came from a company who has to serve an

exponential amount of data with one of the biggest user bases to websites and phones,

and that is Facebook. Facebook created GraphQL in 2015 and has been gaining traction

by the mainstream developers ever since. GraphQL not only reduces the noise but allows

for greater interface by the consumers to use the application. First, how does this work?

GraphQL exposes ONE endpoint for the clients to access; this endpoint will then allow

the user to send in structured JSON to tell the server exactly what it wants. This is done

by using GraphQL query language, which we will go over each part of the syntax here,

but you can find more at https://graphql.org/learn/queries/. Let’s dive into some

examples on how that query language looks.

 Query

In our REST example, if we wanted to find all the media data names (just names), you

would have to do a query to /retrieve_media/list, and then it would return a JSON

like in Listing 4-1.

Listing 4-1. Example output for a RESTful query

{
 "data": [
 {
 "name": "Front Door",
 "id": "c0b7f4a8-debe-4f72-b075-d752d82fa69c",
 "note": "Our Notes",
 "media_type": "Video",
 "location": "Local",
 "media_audience_type": ["Family"],
 "size": 3,
 "created_at": 1562622727,
 "updated_at": 1562622727
 },

Chapter 4 Messaging and graphQL

https://graphql.org/learn/queries/

136

 {

 "name": "Kitchen",

 "id": "619f0036-2241-4b95-a544-b000a83262ac",

 "note": "Our Notes",

 "media_type": "Video",

 "location": "Local",

 "media_audience_type": ["Family"],

 "size": 3,

 "created_at": 1562622727,

 "updated_at": 1562622727

 }

]

}

Now multiply that by 100, and that gets quite a bit of data back that we simply don’t

want; how would this look in GraphQL? Listing 4-2 shows the query we’d use to query all

names in the media data.

Listing 4-2. Find all the media data by name

{

 allMedia {

 name

 }

}

In the query, we are stating only the fields we want and not the fields we don’t. It is then

up to the consumer to decide which fields we want; the output for this is in Listing 4-3.

Listing 4-3. Example output for the previous query

{

 "data": {

 "allMedia": [

 {

 "name": "Front Door"

 },

Chapter 4 Messaging and graphQL

137

 {

 "name": "Kitchen"

 }

]

 }

}

We could have of course added more fields to that and even add struct fields that

may require a separate query like comments, only doing that query when we have

the field specified. With the REST query, it becomes dangerous to add any connected

objects because if you don’t need them all the time, then you don’t want to automatically

perform the database join, since it will slow down retrieval. With GraphQL, we have the

ability to only use the attributes we want. In Listing 4-4, we show the input with a query

including the comments and example output.

Listing 4-4. Example input and output of all media with comments

{

 allMedia {

 name

 updatedAt

 comments {

 body

 }

 }

}

{

 "data": {

 "allMedia": [

 {

 "name": "Joseph",

 "updatedAt": 1562625410,

 "comments": [

 {

 "body": "Our first comment"

 }

Chapter 4 Messaging and graphQL

138

]

 },

 {

 "name": "George",

 "updatedAt": 1562625410,

 "comments": []

 }

]

 }

}

 Mutations

In addition to querying, we also use REST to alter the database. GraphQL uses mutations

to add, update, and delete any data. The mutations can expect one to many objects

including GraphQLObjects. With the mutations, you generally define the method with the

parameters to call, and then the query variables are separate. That way, you can reuse the

method when needed. In Listing 4-5, I have the mutation along with the query variables.

Listing 4-5. Example input and output of all media with comments

mutation add($id: Uuid!, $bod:String!) { ①
 addComment(mediaItemId: $id, body: $bod) { ②
 success ③
 value

 }

}

{

 "id": "fc5b6acc-816d-4afb-80ee-2c47c8c9180c", ④
 "bod": "Our first comment"

}

 ➀ Defining a name for our mutation; this can be totally random. The

variables need whatever is needed to fill in the next step.

 ➁ The addComment is the name of the mutation we define in our

system.

Chapter 4 Messaging and graphQL

139

 ➂ The success and value are the fields we want returned from the

mutation.

 ➃ Our query variables, the id references $id and bod references $bod

when used for the mutation.

In that example, we will create a new comment which references the media data

id and has a body value that we reference in bod. The output of the result of this when

successful is in Listing 4-6.

Listing 4-6. Mutation output with a successful result

{

 "data": {

 "addComment": {

 "success": true,

 "value": 23

 }

 }

}

 Subscriptions

The last feature I want to touch on with GraphQL is subscriptions. Subscriptions are

used to allow consumers to create a socket connection to the application and have

changes pushed to it when data changes. This can be very useful for UIs to be able to

dynamically update without constant queries. We won’t be covering subscriptions in this

book. At the time of writing of this chapter, they were not complete. However, they are

now and I welcome their use for your future applications.

 Playground

The final concept I wanted to go over is the playground, also referenced as the explorer.

This is probably one of my favorite features when it comes to GraphQL and will make

your life easier. This is also how I tested and produced the output from the previous

examples. GraphQL essential provides a playground to test your queries with against the

server. Since the queries we are supplying can be more complex, it allows an easy way to

Chapter 4 Messaging and graphQL

140

run the queries and test against. When the server is launched, the playground endpoint

can be exposed, and you will be able to write queries, mutations, or subscriptions (if

supported) like in Figure 4-1.

In addition, the other feature is the self-documenting nature of the application. All

the GraphQL mutations, queries, and subscriptions will show up including the possible

params and the objects they return. Some iOS and React components can read these to

help assist in creating the queries necessary to run your application. Figure 4-2 shows an

example of our documentation.

Figure 4-1. Shows the mutation for addComment

Chapter 4 Messaging and graphQL

141

The other great feature is that when you do change or add, anyone using the

application can easily see the changes without having to write extra documentation; it is

an example of the code, being the documentation, and it will never be able to get out of

sync like a wiki page can.

 Juniper
Now that you’ve seen what makes GraphQL work, let’s show how to make those queries

we used earlier actually work in our application. We will be using the Juniper crate to

implement GraphQL on our application (https://graphql-rust.github.io/juniper/

current/). These libraries seemed the most complete from the ones out there, and they

have built-in support for Iron as well.

Figure 4-2. Shows the available GraphQL queries

Chapter 4 Messaging and graphQL

https://graphql-rust.github.io/juniper/current/
https://graphql-rust.github.io/juniper/current/

142

 Setting Up Juniper

In order to use Juniper, we are going to have to use the Juniper crate, in addition, the

crate of the custom web framework juniper supports; in our case, that will be juniper_

iron to allow us to easily integrate the endpoints with iron. The addition of the juniper

crate is in Listing 4-7.

Listing 4-7. Adding Juniper and juniper iron; this will be in the file Cargo.toml

[dependencies]

juniper = "0.14.2"

juniper_iron = "0.6.2"

[patch.crates-io]

juniper = { git = "https://github.com/nusairat/juniper",

branch = "v14.2/add-uuid" }

 Creating the Context

Now let’s set up our context object. With our normal web flow process, we are in iron

action functions and have full access to the iron::Request object; this object can contain

extra parameters, or as you’ve seen, we can add configuration from custom middleware. In

order to do the same with Juniper, we are going to have to create a custom implementation

of the juniper::Context. You can add a variety of fields from the request and anything

else that you can set to it. This will then be accessible in our queries and mutations.

In Listing 4-8, we create a custom Context that will contain the remote_addr and the

database pool; we aren’t going to use the remote_addr, but just adding it for fun.

Listing 4-8. Creating the custom context; this will be in the file graphql/context.rs

pub struct Context { ①
 pub pool: PgPooled ②
}

impl juniper::Context for Context {} ③

pub fn context_factory(req: &mut Request) -> IronResult<Context> { ④
 Ok(Context {

 pool: req.db_conn() ⑤
 })

}

Chapter 4 Messaging and graphQL

143

 ➀ The custom context we will use in our queries and mutations.

 ➁ Setting the database pool so we can pass it into our queries and

updates.

 ➂ Need to set the Context created to be a juniper::Context to work with

juniper.

 ➃ Set up the context factory.

 ➄ Using our DB Pool middleware to pull the request connection.

 Setting Up the Schema

Next let’s set up our GraphQLObjects; these are going to be the struct that can be used

as return data from the queries or even be used for passing data for the mutations. For

our two examples, we will use them as the return. These are actually quite easy to create;

you just need to make sure the struct implements the GraphQLObject trait; you can also

add descriptions that are then reflected in the playground and even deprecate fields so

the consumer knows to eventually move away from that object or field. In Listing 4-9,

we implement the GraphQLObject for Media and Comment. Please note that while

we use snake case in Rust, GraphQL uses camel case, so any object names you define

here in snake case will be converted to camel case for GraphQL. This is quite common

throughout GraphQL utilities; the Elixir Absinthe plug-in does the same thing.

Listing 4-9. Creating the schemas; this will be in the file graphql/schema.rs

#[derive(GraphQLObject)]

#[graphql(description = "Media objects for the application")]

pub struct Media { ①
 pub id: Uuid,

 pub name: String,

 pub note: Option<String>,

 pub media_type: MediaEnum,

 pub location: String,

 pub location_type: LocationEnum,

 pub device_id: Uuid,

 pub media_audience_type: Vec<MediaAudienceEnum>,

 pub size: i32,

Chapter 4 Messaging and graphQL

144

 pub published: bool,

 pub created_at: NaiveDateTime,

 pub updated_at: NaiveDateTime,

}

#[derive(GraphQLObject)]

#[graphql(description = "Comments given to the item")]

#[derive(Queryable, PartialEq, Debug)]

pub struct CommentG { ②
 pub id: i32,

 pub body: String,

 pub media_item_id: Uuid,

 pub created_at: NaiveDateTime,

 pub updated_at: NaiveDateTime

}

 ➀ The Media GraphQLObject.

 ➁ The Comment GraphQLObject.

 Creating a Query

Now let’s get to the meat and potatoes of making GraphQL work, creating our queries

and after this our mutations. Each will be defined relatively the same way. The queries

we want will be a struct that implements various functions. This struct can be named

whatever you want; for consistency sake, I would call it Root or Query. We are going

to call ours Root and then implement various functions on it. These will be functions

that are then exposed in the GraphQL as queries, and the parameters are the same

parameters we used in the playground previously. In Listing 4-10, we create our struct,

implementing three different queries.

Listing 4-10. Creating the query; this will be in the file graphql/context.rs

use crate::graphql::schema::{CommentG, Media, MediaComment};

use crate::models::media_data::MediaData;

use crate::models::comment::Comment;

pub struct Root; ①

Chapter 4 Messaging and graphQL

145

#[cfg(feature = "cqrs")]

#[juniper::object(②
 Context = Context,

)]

impl Root { ③
 fn all_media(context: &Context) -> Vec<MediaComment> { ④
 MediaComment::all(&context.pool) ⑤
 }

 fn find(device_id: Uuid, context: &Context) -> Vec<MediaComment> {

 MediaComment::find(device_id, &context.pool)

 }

 fn comments(media_id: Uuid, context: &Context) -> Vec<Comment> {

 let pool = &context.pool;

 Comment::all(media_id, &pool)

 }

 fn health(user_id: Uuid, context: &Context) -> Vec<Uuid> {

 HealthData::find(user_id, &context.pool)

 }

}

 ➀ The struct for the GraphQL Query.

 ➁ Sets up the context that we created previously to be injected.

 ➂ An impl to create all the different queries for the Root.

 ➃ Our first query, the all_media, will be translated to allMedia for

GraphQL.

 ➄ Queries all the media data and returns a vector of the media model.

You should notice two things here, the first being that we add the Context trait that

we set up previously. This is then added to each query call (note that part is not exposed

in the GraphQL). And this is what allows us to get access to our database or message

queue pool. Also note the naming just like earlier for the schema; the snake case will be

converted to camel case.

Chapter 4 Messaging and graphQL

146

 Creating a Mutation

Now the flip side of creating the queries is the mutations. The mutations have essentially

the same format in setting up in our code as the queries except this will be used for

changing the underlying database as opposed to querying. In addition, your results are

often not the object itself but some way to mark the transaction as being successful,

perhaps passing back the UUID of the object created. In Listing 4-11, we add two

mutations related to comments.

Listing 4-11. Creating the mutation; this will be in the file graphql/context.rs

use crate::models::comment::Comment as CommentDb;

#[cfg(feature = "ch04")]

#[derive(juniper::GraphQLObject)] ①
pub struct MutationResult { ②
 success: bool,

 value: i32

}

#[cfg(feature = "ch04")]

pub struct Mutations; ③

#[juniper::object(④
 Context = Context,

)]

impl Mutations { ⑤
 fn add_comment(&self, media_item_id: Uuid, body: String, context:

&Context) -> FieldResult<MutationResult> { ⑥
 // Validate inputs and save user in database...

 info!("Add comment :: {}, {}", media_item_id, body);

 let val = add_comment(self, context, media_item_id, body);

 let result = MutationResult {

 success: true,

 value: val,

 };

 Ok(result) ⑦
 }

Chapter 4 Messaging and graphQL

147

 fn delete_comment(comment_id: i32, context: &Context) ->

FieldResult<bool> {

 // Validate inputs and save user in database...

 info!("Del comment :: {}", comment_id);

 let success = match CommentDb::delete(&context.pool, comment_id) {

 Ok(_) => true,

 Err(_) => false

 };

 Ok(success)

 }

}

#[cfg(feature = "ch04")]

fn add_comment(mutations: &Mutations, context: &Context, media_item_id:

Uuid, body: String) -> i32 {

 CommentDb::add(&context.pool, media_item_id, body)

}

 ➀ Applying the struct to be a GraphQLObject.

 ➁ The MutationResult will be a standard result we will return for our

mutations.

 ➂ The struct for GraphQL mutations.

 ➃ Setting up the context that we created previously to be injected.

 ➄ An impl for the Mutations.

 ➅ The add_comment mutation will be translated to addComment in our

application as well as media_item_id to mediaItemId.

 ➆ Returning the MutationResult successfully.

 Integrating with the Iron Router

We now have everything set up for the GraphQL; the last part is the actual integration

with the iron framework that we created and managed in our http module. There is

only one endpoint you have to integrate to, and that is the /graph one, the GraphQL

Chapter 4 Messaging and graphQL

148

handler. However, we also want access to the playground, so we will have two endpoints

for our implementation. The juniper_iron crate we brought in earlier comes with three

different handlers we use to our application:

• GraphQLHandler – The main handler that will take the query and

mutation struct we used earlier to perform all the necessary GraphQL

functions.

• PlaygroundHandler – The handler that will create the playground

UI we used earlier; this will take in the relative URL to the

GraphQLHandler.

• GraphiQLHandler – This handler creates another UI similar to

the look of the playground UI but simpler; this will also take in the

relative URL to the GraphQLHandler. Generally speaking, you would

use either the PlaygroundHandler or the GraphiQLHandler.

Let’s create the handlers and mount endpoints to the handlers; we will use /graph

for the GraphQLHandler and /play for the PlaygroundHandler. In Listing 4-12, we create

all the handlers and endpoints.

Listing 4-12. Adding Juniper and juniper iron; this will be in the file http.rs

use juniper_iron::{GraphQLHandler, GraphiQLHandler, PlaygroundHandler};

use juniper::{EmptyMutation, FieldResult};

use crate::graphql::context::{Context, context_factory, Root, Mutations};

use event sourcing::eventstore::OrgEventStore;

let playground = PlaygroundHandler::new("/graph"); ①

let graphql_endpoint = GraphQLHandler::new(②
 context_factory,

 Root,

 Mutations

);

mount.mount("/play", playground); ③
mount.mount("/graph", graphql_endpoint); ④

Chapter 4 Messaging and graphQL

149

 ➀ Setting up the playground, which will use an endpoint of /graph to

interface with.

 ➁ Creating the endpoint for the GraphQL to process against; this also

references the Root (query) and Mutation we created earlier.

 ➂ The endpoint for our playground tieing the handler to it.

 ➃ The endpoint for the GraphQL that the consumer apps will use; this

also needs to be the same endpoint that was used in bullet 1.

Now if you go to your console and run cargo run, you will be able to go to the /play

endpoint and start testing queries and mutations against our application. You can use

the query and mutations we created earlier as examples to start with.

 Messaging
Messaging is going to be one of our core components to creating an IoT system. This is

what will drive much of the communication between the device and the cloud and allow

it to be fault-tolerant services. For those of you that have never used a message queue

before, it uses publish-subscribe protocol that is used for a variety of asynchronous

communication for many years now. However, recently it has become very favorable

with IoT applications since it would be a security hazard usually, to directly expose

endpoints like thermostats or vehicles to the open Internet to have command sent

directly to. The MQ we will be using here is Message Queuing Telemetry Transport

(MQTT) based on ISO/IEC PRF 20922.1 Message queues involve having a broker that

serves as a high availability system for passing messages between systems. The messages

are passed via topics, and the client can decide if it wants to subscribe or publish to a

particular topic. The messages are most often sent as JSON objects.

 Purpose in the IoT System
Communication between the cloud and your device is one of the most paramount

importance with any IoT devices. We need to provide seamless communication between

cloud and hardware but still allowed for downtime. The downtime in the cloud can often

1 www.iso.org/obp/ui/#iso:std:iso-iec:20922:ed-1:v1:en

Chapter 4 Messaging and graphQL

http://www.iso.org/obp/ui/#iso:std:iso-iec:20922:ed-1:v1:en

150

be mitigated to close to zero, but it’s the device downtime that you will always have the

greater issue with. If the device is in the home, you can lose Internet at random times; if

the device is part of a vehicle, they can quite often be out of range or underground, same

with a personal IoT device (like a phone). Or the device simply can be off. You don’t want

to lose messages to the device just for being out of range or off.

Additionally, there is the security concern. Suppose we want to remotely be able to

start and stop a camera. Without the message queue to be used for communicating, we

would have to expose an endpoint on the device itself to communicate against, which

then starts a litany of problems. For one, if the home IP changes, that would then have

to update the endpoint each time, which can be mitigated by using DNS entry but this

is sloppy. Then there is the issue that if you are using any modern router, it probably

have a firewall (or should), and you would have to expose the port we are using to the

firewall, which would require supplying documentation for each router for the end user

to configure, and finally basically the issue of hacking. Imagine if a hacker could hack the

endpoint and disable all security cameras. In addition, every time you expose a port on

your firewall, you allow another way for a hacker to enter. Simply put, message queues

are easier and more secure.

 Our Design
Our design will be expanding as the book goes on; for this chapter, we are mostly

involved with putting the plumbing in place; we will add on more when we get to other

chapters. For now, we are going to add two things, so we can balance out practicing the

publish and subscribe. We will start with our health check monitor. This will monitor the

health endpoint; eventually, the device we are creating will periodically send a message

to the cloud to know the status of the system. This will help us in the future able to do

inform the user if there is an IoT component down. For now, our service will be fairly

simple. The endpoint for our health topic will be in the structure of health/[uuid], with

the uuid being the id of the device.

On the publish side, we are going to publish commands to start and stop recording

of cameras on an IoT device; for us, each device could contain more than one camera,

so we will specify the camera UUID as well. This endpoint will be only two levels as well,

with the structure recording/[uuid], the uuid being the id of the device as well. (Note:

The Raspberry Pi will then have a corresponding publish of health data and subscribe of

recording.)

Chapter 4 Messaging and graphQL

151

A bit further thought on the design. I could have easily tied the MQTT interface to

retrieval or upload service. But I like to keep one microservice that interacts with the

MQTT and then sends the data to the necessary microservices for work. This keeps

the service without too many moving parts and also never exposes any endpoints

accessible outside of our cluster. This is mostly for security reasons, so that in order to

pop the microservice, they’d have to get to another box first. We will dive more into this

architecture in our security chapter; for now, just realize this is a separate microservice

on purpose.

 Starting Up Local Messaging Service
Message queues require a broker to be run on, and much like our database, we are going

to use docker to run that broker locally. This will provide us the maximum flexibility

and ease to create, run, and manage the message queue for testing – and biggest ease in

turning it off or getting rid of it later.

We will be creating this image twice, once in this chapter and another time in the

security where we will add authentication mechanisms. For now, we will not worry

about authentication.

The docker image we are going to use is devrealm/emqtt; this is the Erlang version of

MQTT, and one of the main reasons I chose is its speed and low memory footprint. I’ve

used this at other jobs and has worked very well in even high use cases. Let’s start off by

pulling the docker image to our local repository in Listing 4-13.

Listing 4-13. Downloading the local docker image

docker pull devrealm/emqtt

Now that the image is there, in Listing 4-14 we will start it up, exposing some default

ports we are going to use as well as a few other settings.

Listing 4-14. Running the docker image for our EMQTT service

docker run --restart=always -ti --name emqtt-no-auth -p 18083:18083 -p

1883:1883 -p 8083:8083 -p 8443:8443 -p 8084:8084 -p 8080:8080 -e

"EMQ_LOG_LEVEL=debug" -e "EMQ_ADMIN_PASSWORD=your_password" -e

"EMQ_NAME=emqtt_broker" -d devrealm/emqtt

Chapter 4 Messaging and graphQL

152

First off, we gave this the name of emqtt-no-auth; this will be the name we can

reference when starting and stopping the docker container. In addition, we set the admin

authentication password to your_password; you will use this along with the user admin

to access the web console for EMQTT portal. We won’t be covering the console in depth

here, but it can be used to see what sessions are currently logged in and what clients are

active. This can be useful in debugging to make sure your device and cloud services are

connected and talking to your message queue. There are also quite a few ports; let’s take

a look at what all of them are for in Table 4-1.

Now that you have your broker up and running, let’s show you how to use it without

writing any Rust code.

 Calling Messaging Service Locally
Before we start coding, let’s use some tools to test out the message queue with; this will

allow us to run a few tests and to understand what we expect to see when running our

code. We will also be using the same set of tools later when testing out the application

since we do not have a device running yet. You can really use any message queue client;

the one I prefer to use is Eclipse Mosquitto. It’s a great easy-to-use broker/client, and

we can use it to test authenticated and non-authenticated services. If you have brew on

your computer, you can use brew install mosquitto to install it. If not, you can go to

https://mosquitto.org/download/ and follow the instructions to install based on

your system.

Table 4-1. MQTT mapping of ports to descriptions

Port Description

18083 Our http port to access the eMQtt admin portal. You will be able to log in via

http://localhost:18083.

1883 the tCp port to access the eMQtt broker; we will be using this port in our application.

8083 the web socket port to access the broker.

8883 not exposed, but it is the port that ssL connects to the broker.

8084 the secure web socket port to access the broker.

8080 the api socket to access the broker; this can be used to access the eMQtt to find items

like sessions active and so on.

Chapter 4 Messaging and graphQL

https://mosquitto.org/download/

153

Once installed, there are a few different commands that it provides us; the two we are

going to use is mosquitto_sub and mosquitto_pub. The first mosquitto_sub subscribes

us to a topic and will print out to the console any messages that are picked up by that

topic. The topic in this can be a fixed topic, or we can use wildcards to subscribe to

what potentially could be a multitude of topics. Since each of our devices will publish to

their own topic, this will be useful to us in our application to be able to have one service

monitor all health topics. The second mosquitto_pub will publish a specific file content

to a topic.

Let’s take a look at an example we will use in conjunction with our health

application. For our health application, we are going to have the devices send messages

to health/[UUID] for each of its health check. We will have them send over information

in the form of a JSON like we have in Listing 4-15.

Listing 4-15. JSON example of the health data; put this in a file named

health.json

{

 "uuid":"9cf81814-1df0-49ca-9bac-0b32283eb29b",

 "status": "Green",

 "msg":"Here we define what could be going on with our application and its

items.",

 "timestamp":1562453750553,

 "peripherals":[{"name":"Camera"},{"name":"Temp"}],

}

Let’s start with the subscribing to that topic; we want our topic to watch all the

messages being sent to health topic; with MQ, there are two ways to do wildcards. Let’s

take a look at an example topic of home/[uuid]/[peripheral]/[action], where the

peripheral could be of the type camera, temperature, and humidity representing three

different sensors. And action could be set or read.

 Single-Level Wildcard (+)

With a single level, we are only replacing one level. Suppose we wanted to do machine

learning on all the temperatures coming back to our system. We could wild card the uuid

with the + wildcard and do a subscription to home/+/temperature/read; this would then

give us all temperature readings across all devices, which can be useful for analysis.

Chapter 4 Messaging and graphQL

154

 Multi-Level Wildcard (#)

The other way is to subscribe to topics across multiple levels. On the device side itself,

you really do not want to set up multiple message monitoring but want to monitor

every command coming for the given uuid. Given our device having a UUID of

24f89ac6-e53d-418b-be6d-2a7571aa483f, we could subscribe with the # wildcard to

home/24f89ac6-e53d-418b-be6d-2a7571aa483f/#.

Please note you want to be careful especially with the multi-level wildcard that you

aren’t going to receive too many messages from the broker or you may not have time to

process the service. This is generally only an issue on the server side since it will pick up

messages from every client, whereas on the client side, you are only receiving messages

for it.

 Subscribing

Now let’s actually subscribe to our health topic to monitor all the outputs. In Listing 4-16,

we subscribe to all the health UUIDs being published.

Listing 4-16. Subscribing to the localhost health topic

mosquitto_sub -d -h localhost -p 1883 -t "health/+" --tls-version tlsv1.2 ①
Client mosq/jvQbjjug7FK8KXaU9q sending CONNECT

Client mosq/jvQbjjug7FK8KXaU9q received CONNACK (0)

Client mosq/jvQbjjug7FK8KXaU9q sending SUBSCRIBE (Mid: 1, Topic: health/+,

QoS: 0, Options: 0x00) ②
Client mosq/jvQbjjug7FK8KXaU9q received SUBACK

Subscribed (mid: 1): 0

 ➀ Our command to subscribe to the health topic.

 ➁ Signaling that subscription was verified.

The subscription confirmation is very important; if you do not see it in your console,

the MQTT application is down, or if this is in the real world it could be blocked due to

VPN or other firewall rules. Now keep this running and open a separate window so we

can publish to it.

Chapter 4 Messaging and graphQL

155

 Publishing

Let’s take that health data file we created in Listing 4-17 and publish it to the topic. In a

new window, we will publish to the health topic using the health.json data. We should

see a verification in our new window that it’s published, and the contents should show

up in your previous subscription window.

Listing 4-17. Publishing to the localhost health topic

mosquitto_pub -d -h localhost -p 1883 -t "health/24f89ac6-e53d-418b-be6d-

2a7571aa483f" --tls-version tlsv1.2 -f health.json ①
Client mosq/dyjKcKhXJXNet0hbt8 sending CONNECT

Client mosq/dyjKcKhXJXNet0hbt8 received CONNACK (0)

Client mosq/dyjKcKhXJXNet0hbt8 sending PUBLISH (d0, q0, r0, m1,

'health/24f89ac6-e53d-418b-be6d-2a7571aa483f', ... (82 bytes)) ②
Client mosq/dyjKcKhXJXNet0hbt8 sending DISCONNECT

 ➀ Our command to publish to the health topic. Note the -f used to tell

us the file being published.

 ➁ Signaling that publication was successfully sent.

Verify everything worked correctly; by verifying, you see the JSON in the subscription

window like in Listing 4-18.

Listing 4-18. Subscription window with the JSON output

Client mosq/jvQbjjug7FK8KXaU9q received PUBLISH (d0, q0, r0, m0,

'health/24f89ac6-e53d-418b-be6d-2a7571aa483f', ... (82 bytes))

{

 "status": "Green",

 "msg": "Everything is fine",

 "timestamp": 1562453750553

}

We can use these commands throughout this and other chapters to verify and

test publishing messages to the MQ. We are now ready to create our Rust application

service.

Chapter 4 Messaging and graphQL

156

 Create the Messaging Service
As I stated earlier, this is going to be another microservice to add to our collection; we

will use the standard iron framework with logging and routing to set up the application.

We won’t cover those parts since much of the initial set up is reuse from our previous

applications. What we will dive into is parts of creating the client and making our

subscription and publishing actions work.

There are a few different crates out there that we can use to create your MQ

application; they range from very low-level to high-level wrappers. One of the issues

with many of them is their support certificates (which we will use in later chapters).

The crate we are going to use is the rumqtt crate (https://crates.io/crates/rumqtt).

This crate allows for easy use of creating clients with securing connections, publishing,

subscribing, as well as handling the callbacks from the system. We will need the rumqtt

and the crossbeam-channel crate to use for our MQ application; we have those imported

in Listing 4-19.

Listing 4-19. Rumqtt Crate with chrono feature enabled

Used to generate the name of the connection

sys-info = "0.6.0"

rumqtt = { version = "^0.31", features = ["chrono"] }

With those installed, let’s go over what we are planning to create:

 1. Client create – We will need a function that given parameters (like

url, port) will make a connection to a message queue and start

up the client. This method will return two things, a client and a

notification handler.

 2. Notification monitor – Our create client will return a handle to

the notifications; this means we will need to create a method to

handle the notifications (usually on subscriptions) to process the

notifications coming back.

 3. Subscribe function – Given a client and topic, we want to

subscribe to a given topic.

Chapter 4 Messaging and graphQL

https://crates.io/crates/rumqtt

157

 4. Publish function – Given a client, topic, and payload, we want to

publish to a given topic.

 5. Iron middleware – Since we plan to use in part in our Rust iron

actions, we will need to create and expose the client in the

middleware.

We will work through those steps for the rest of the chapter; let’s start with creating

the client. In order to create the client, let’s define a struct that contains all the

necessary configurations for the client. Right now, the struct only needs to contain two

items, the server and port, like we have in Listing 4-20.

Listing 4-20. Struct for our configurations; this will be in the file mqtt/mod.rs

#[cfg(feature = "ch04")]

#[derive(Debug, Clone)]

pub struct MqttClientConfig {
 pub mqtt_server: String, ①
 pub mqtt_port: u16, ②
}

#[cfg(feature = "ch04")]

impl MqttClientConfig {
 pub fn server_name(&self) -> String { ③
 match sys_info::hostname() {
 Ok(name) => {

 name

 },

 Err(error) => {

 "server".to_string()

 }

 }

 }

}

 ➀ Variable to hold the server URL (in our case localhost).

 ➁ Variable to hold the server port (1883 since we will connect via TCP).

 ➂ This will be used to help us generate the client id, giving us the name

of the server we are on.

Chapter 4 Messaging and graphQL

158

The fields for these should be created via environmental variables and set in the main

like we did in previous chapters. When creating the client, it’s important to note that

this name should be unique for connections to the server and also should be somewhat

meaningful so that if you are viewing it on the web UI, you have an idea what client it is.

With that in mind, we are going to create the client, passing in the config, and a unique

name for the client. In Listing 4-21, we have our create_client function.

Listing 4-21. The create_client function; this will be in the file mqtt/client.rs

use rumqtt::{MqttClient, MqttOptions, QoS, ReconnectOptions, Notification,

Receiver}; ①

use super::MqttClientConfig;

const CLIENT_NAME: &str = "mqtt";

#[cfg(feature = "ch04")]

fn create_client(config: &MqttClientConfig, name: &str)

 -> (MqttClient, Receiver<Notification>) {

 let client_id = format!("{}-{}-{}", CLIENT_NAME, name, config.server_name()); ②

 debug!("Create the connection ... ");

 let reconnection_options = ReconnectOptions::Always(10);

 let mqtt_options = MqttOptions::new(client_id, config.mqtt_server.

as_str(), config.mqtt_port) ③
 .set_keep_alive(10)

 .set_reconnect_opts(reconnection_options)

 .set_clean_session(false);

 MqttClient::start(mqtt_options).expect("Issue trying to make a client

connection") ④
}

 ➀ Imports needed from rumqtt for use by the client.

 ➁ We create a custom client using a generic name for the MQ, the name

passed in, and the server name. The last is needed when you have

multiple developers trying to code against a remote service and do

not want collisions.

Chapter 4 Messaging and graphQL

159

 ➂ Creates the MqttOptions given the config we passed in and other

variables.

 ➃ Starts up the client returning MqttClient and the crossbeam_channe

l::Receiver<Notification.

When this is called, we will have an active client we can make requests against.

One topic I want to address that we will use next is the quality of service (QoS). This

is common in message queues, and if you have never used one, it is good to learn about

how they work or more importantly how they guarantee delivery. The following are the

three levels of QoS used in MQTT:

• QoS 0 – At Most Once

• QoS 1 – At Least Once

• QoS 2 – Exactly Once

These QoS are used when publishing and subscribing and can be used based on

networking reliability and application rules. We need to define these based on how

important it is for a message to be delivered and how detrimental it is for it to be a

duplicated message. Remember, with topics, you can have multiple clients publishing and

multiple clients subscribing. Now the tricky thing here is that the subscriber and publisher

do not have to use the same QoS level; what happens in that case? In the case of a subscriber

defining a lower QoS than it was published with, the broker downgrades the messages and

sends to the subscriber with a lower QoS. Let’s take a look at what each QoS level means.

At Most Once – QoS 0

This is the least guaranteed method in our delivery system, but also has the least amount

of overhead. When publishing this message, the client fires the message to the broker

and forgets about it. There is no guarantee of delivery; it simply sends to the broker and

goes on its business. This is good for messages that are immaterial to the application

working correctly. In our application, the health check can be a QoS of 0. If the message

gets lost or not delivered, it’s not the end of the world, and another health check will

come shortly anyways.

At Least Once – QoS 1

The second method, with a QoS of 1, is a two-way communication. The publisher sends

a packet and waits for the broker to acknowledge that it received the packet by sending

a PUBBACK packet. However, if the PUPBACK is not received, it will send another message.

Chapter 4 Messaging and graphQL

160

Now the message may not have been delivered due to network congestion, slow broker,

and so on. In this case, it is possible that the broker will see the same message twice, and

thus any clients will receive it twice. This will be fine for topics like recording; we want to

guarantee that when we say to start or stop a recording, the broker receives it; however, if

the broker sends two starts to a client, it won’t make a difference since it already started.

Exactly Once – QoS 2

The final one is the most expensive in terms of network traffic, but it guarantees that not

only does the broker receive the message, but it receives it only once. This is achieved by a

four-part handshake. QoS of 2 should only be used if a client receiving the same message

twice could cause unintended consequences. We will not be using it for our system, but

imagine if you were sending commands to a robot car, and you sent “turn left” obviously

receiving one “turn left” vs. two “turn lefts” would cause very different behavior.

Now that we have our client created and understand QoS a bit, let’s turn to

subscribing to a topic.

 Subscribe to the Health Topic

For our use case, we will be subscribing to the health topic. To subscribe to a topic, we

are going to need to define a non-blocking call to subscribe to the topic, since the topic

could receive data at any point, but we want to continue with our processing. Part of

the tuple returned in the create_client is a notification receiver that will contain any

notifications from the subscription. To help with the processing, I have created a generic

set of code that we can feed the receiver to in order to process the notifications for

subscribers; that code is in Listing 4-22.

Listing 4-22. The monitor_notifications function; this will be in the file

mqtt/mod.rs

use rumqtt::{Receiver, Notification}; ①
use rumqtt::Notification::{Publish};

use std::{thread, str};

use log::{debug, error};

// Monitor the notifications from the notification receiver.

#[cfg(feature = "ch04")]

pub fn monitor_notifications(notifications: Receiver<Notification>, url:

String, f: fn(&str, String, String)) { ②

Chapter 4 Messaging and graphQL

161

 thread::spawn(move || { ③
 for notification in notifications {

 debug!("Notification {:?}", notification);

 match notification {

 Publish(p) => { ④
 // Retrieve the payload and convert it to a string.

 let pl = String::from_utf8(p.payload.to_vec());

 debug!("The Payload :: PKID: {:?}, QOS: {:?},

Duplicate: {:?}", p.pkid, p.qos, p.dup);

 match pl {

 Ok(payload) => f(url.as_str(), p.topic_name,

payload), ⑤
 Err(error) => {

 error!("Error sending the payload: {:?}", error)

 },

 };

 },

 _ => debug!("n/a")

 }

 }

 });

}

 ➀ Imports needed for the monitor_notifications function.

 ➁ Our function signature containing the notifications we received, a

client, and a function that will be used to forward the message.

 ➂ We spawn a thread to do a forever for loop. The thread is necessary

so we do not block other method calls.

 ➃ The notification can have multiple types, mostly acknowledging the

packet. All we care about though is the actual Publish notification.

 ➄ Forward the payload to the function we passed in.

You will notice that I have created this to be very generic, as I stated earlier, most

of what I do with messages is I pass them on to other microservices. We could have

just as easily made this a struct holder containing all the environmental variables or

Chapter 4 Messaging and graphQL

162

even a generic struct to pass in. Also notice we are sending a function in each time, this

function will have to have the same signature across all uses of it; it has three function

parameters:

 1. url – The url we just mentioned; if this is not needed, you could

always pass in a blank string.

 2. topic – The topic subscribed to; this is necessary in case the topic

contains important details like the UUID in the case of the health

topic.

 3. payload – This is the actual message received and needing to be

processed.

The monitor is actually the second half of the equation to create the subscription;

the first is the subscribe function itself. In Listing 4-23, we call the subscribe on the

application passing in the three necessary items, the client, topic, and our QoS.

Listing 4-23. The subscribe function; this will be in the file mqtt/client.rs

pub fn subscribe(client: &mut MqttClient, topic: &'static str, qos: QoS) {

 info!("Subscribe and process: : {:?}", topic);

 client.subscribe(topic, qos).unwrap();

}

Now that we have and understand the monitor_notifications and subscribe, let’s

take a look at how we will use this with the health subscription. In Listing 4-24, we set up

a call to monitor the health subscription.

Listing 4-24. The monitor function; this will be in the file actions/health.rs

use crate::mqtt::client::{subscribe, create_client};

use crate::mqtt::{MqttClientConfig, monitor_notifications};

const MOD_NAME: &str = "health"; ①

pub fn monitor(config: &MqttClientConfig, retrieval_svc_url: String) {

 let (mut mqtt_client, notifications) = create_client(&config, MOD_NAME); ②
 ////emqtt::subscribe(&config,"vehicle/+/pulse", &mandalore_url,

heartbeat::process);

 info!("Subscribe to the device health ...");

Chapter 4 Messaging and graphQL

163

 subscribe(&mut mqtt_client,"health/+", QoS::AtMostOnce); ③
 debug!("Monitor the notifications ... ");

 monitor_notifications(notifications, retrieval_svc_url,process); ④
}

 ➀ Part of the unique name that will make up the client id.

 ➁ Calling the create client and returning a tuple that contains the client

and notifications.

 ➂ Call to the subscribe function we defined earlier.

 ➃ Call to the monitor_notifications we defined earlier passing in the

function we are going to be using process.

One important takeaway is that we need to create a process function that will

actually process the payload. For our method, we are going to take the payload, convert it

to a struct, and call to a send_to_service method. For now, this method will just output

the contents, but in later chapters, we will actually hook it up to the retrieval_svc. In

Listing 4-25, we have the process function along with its helper functions.

Listing 4-25. The process function; this will be in the file actions/health.rs

pub fn process(url: &str, topic: String, pl: Vec<u8>) {

 info!("Payload Size :: {} ", pl.len());

 let pl = String::from_utf8(pl);

 match pl {

 Ok(payload) => process_and_send(url, topic, payload),

 Err(error) => {

 error!("Error sending the payload: {:?}", error)

 },

 };

}

fn process_and_send(url: &str, topic: String, payload: String) {

 info!("Process Health :: {} :: {}", topic, payload);

 // UUID and data

 let uuid = convert_uuid_input(topic.as_ref()); ①

Chapter 4 Messaging and graphQL

164

 let mut health_data: HealthData = serde_json::from_str(payload.as_

str()).unwrap(); ②
 health_data.uuid = uuid;

 send_to_service(url, &health_data);

}

fn convert_uuid_input(input: &str) -> Option<Uuid> { ③
 match extract_uuid(input) {

 Some(uuid_str) => {

 let uuid = uuid_str;

 Some(Uuid::parse_str(uuid).unwrap())

 },

 None => {

 None

 }

 }

}

fn extract_uuid(input: &str) -> Option<&str> {

 debug!(" Input :: {}", input);

 lazy_static! {

 //static ref RE: Regex = Regex::new(r"health/(?P<uuid>[0-9a-

zA-Z_-]*)/check").unwrap();

 static ref RE: Regex = Regex::new(r"health/(?P<id>(.*))").unwrap(); ④
 }

 RE.captures(input).and_then(|cap| {

 debug!("CAPTURE: {:?}", cap);

 cap.name("id").map(|uuid| uuid.as_str()) ⑤
 })

}

pub fn send_to_service(url: &str, data: &HealthData){

 info!("We are sending {:?} to {}", data, url); ⑥
}

Chapter 4 Messaging and graphQL

165

 ➀ The UUID is in the topic; we need to extract it.

 ➁ Use serde_json to convert the JSON into a struct.

 ➂ Function to convert the topic to a UUID.

 ➃ Regex to identify the id from the topic.

 ➄ Uses the regex name mapped to ID to get the ID and return it as a

string slice.

 ➅ Prints out the final object; this is placeholder code for our later

chapter.

As you can see, we are making use of the regex to parse the string; the regex itself is

static and won’t change. However, we can’t define consts that require a function call to

compute the value, hence our use of lazy_static; the lazy_static macro allows us to

create statics that require heap allocations, vectors, hash maps, or as in our case function

calls in order to be initialized. Let’s also take a look at the struct we are creating; we have

it defined in Listing 4-26.

Listing 4-26. The HealthData struct; this will be in the file actions/health.rs

use chrono::prelude::*;

use chrono::naive::serde::ts_milliseconds::deserialize as from_milli_ts; ①

// combination of : use num_traits::{FromPrimitive,ToPrimitive};

use enum_primitive_derive::Primitive;

#[derive(Serialize, Deserialize, Debug, Primitive, PartialEq)]

pub enum Status { ②
 Green = 0,

 Red = 1,

 Yellow = 2

}

#[derive(Serialize, Deserialize, Debug)]

pub struct Peripheral {

 pub name: String

}

Chapter 4 Messaging and graphQL

166

#[derive(Serialize, Deserialize, Debug)]

pub struct HealthData {

 pub uuid: Option<Uuid>,

 #[serde(deserialize_with = "from_milli_ts")] ③
 pub timestamp: NaiveDateTime,

 pub status: Status,

 pub msg: String,

 pub peripherals: Vec<Peripheral>

}

 ➀ Using one of the built-in serde converters for NaiveDateTime, you can

also create your own custom one.

 ➁ Possible values for the status.

 ➂ Converting from the supplied long value to the NaiveDateTime.

Had we just wanted to forward this along as JSON to another endpoint, the

conversion would not have been necessary but could have been beneficial. The

conversion could have still served as a validation step that the JSON retrieved was in the

form of values that our downstream processes could understand since any JSON format

could be sent to the message queue. Ideally, we should still do that here to handle the

error casing of bad JSON. I will leave it up to the reader to add that code.

 Publish to the Recording Topic

Let’s take a look at the flip side of a subscription, the publishing. With publishing, we

essentially fire and forget, at least from a code point of view. Depending on the QoS

under the covers, it may do more. The client will perform the same create client call we

made before, but now we will be calling a publish function like in Listing 4-27.

Listing 4-27. The publish function; this will be in the file mqtt/client.rs

pub fn publish(client: &mut MqttClient, topic: &str, payload: String, qos:

QoS) {

 info!("Publish to the topic : {:?}", topic);

 client.publish(topic, qos, false, payload).unwrap();

}

Chapter 4 Messaging and graphQL

167

All we have to do is create the client and pass our client, topic, and payload to send

over and we are done. However, the issue is how we plan to make this work. We want this

message queue to be triggered by an outside call to our service. To do this, we will expose

an iron action that our services can call, which will then trigger the message queue. The

router for that action is defined in Listing 4-28.

Listing 4-28. The action for running the recording function; this will be in the

file http.rs

recording: post "/recording/:id/:type" => recording::run,

Here we are passing in the UUID of the device, type (start, pause, stop), and the uuid

for the camera. Now how do we get the client to be exposed in the action? The answer as

you may have guessed is the same way we exposed the database to our iron application

in the previous chapter via middleware.

Message Queue Middleware

We are going to create a middleware piece that allows us to expose the client in the iron

action. What follows are the steps to go through in creating the middleware; I won’t

overly dive into what each part does since we’ve created middleware twice now. But to

start with, the main entry in initializing the MQ middleware is to pass the config into the

application. In Listing 4-29, we set up the middleware to accept our MqttClientConfig

that we previously created.

Listing 4-29. The middleware definition; this will be in the file mqtt/middleware.rs

use super::MqttClientConfig;

use super::client::create_client;

pub struct MqttClientMiddleware {

 config: MqttClientConfig,

 client: Option<MqttClient>

}

impl MqttClientMiddleware {

 pub fn new(config: MqttClientConfig) -> MqttClientMiddleware {

 MqttClientMiddleware {

 config: config,

Chapter 4 Messaging and graphQL

168

 client: None

 }

 }

}

Next we run through the steps of implementing the BeforeMiddleware trait for the

struct we just created as well as creating a trait that will expose the method call to our

extensions on the Request. All of this is written in Listing 4-30.

Listing 4-30. The middleware implementation; this will be in the file

mqtt/middleware.rs

// Our tuple struct

pub struct Value(MqttClientConfig, Option<MqttClient>); ①

// This part still confuses me a bit

impl typemap::Key for MqttClientMiddleware{ type Value = Value; }

impl BeforeMiddleware for MqttClientMiddleware {

 fn before(&self, req: &mut Request) -> IronResult<()> {

 req.extensions.insert::<MqttClientMiddleware>(Value(self.config.

clone(), None)); ②
 Ok(())

 }

}

// TODO See if i can get working if not remove

//impl AfterMiddleware for MqttClientMiddleware {

// fn after(&self, req: &mut Request, res: Response) ->

IronResult<Response> {

// let config_val = req.extensions.get::<MqttClientMiddleware>().

expect("Mqtt Client");

// let Value(ref config, client) = config_val;

// match client {

// Some(mut client_val) => {

// client_val.shutdown();

// }

// _ => {}

Chapter 4 Messaging and graphQL

169

// }

// Ok(res)

// }

//}

pub trait MqttRequestExt {

 fn mqtt_client(&mut self) -> (MqttClient, Receiver<Notification>); ③
}

impl<'a, 'b> MqttRequestExt for Request<'a, 'b> {

 fn mqtt_client(&mut self) -> (MqttClient, Receiver<Notification>) {

 debug!("Get Client Request");

 let config_val = self.extensions.get::<MqttClientMiddleware>().

expect("Mqtt Client");

 let Value(ref config, _) = config_val;

 // Create the client here for each request

 let (client, note) = create_client(&config, random().as_str()); ④
 // save the client

 self.extensions.insert::<MqttClientMiddleware>(Value(config.to_

owned(), Some(client.clone())));

 return (client, note);

 }

}

fn random() -> String { ⑤
 use rand::{thread_rng, Rng};

 use rand::distributions::Alphanumeric;

 thread_rng()

 .sample_iter(&Alphanumeric)

 .take(5)

 .collect()

}

 ➀ Setting the Value to the config.

 ➁ Inserting the config before the method call.

Chapter 4 Messaging and graphQL

170

 ➂ Exposing a trait that we can use in our action that exposes

mqtt_client() method.

 ➃ A call to the create_client that we created previously.

 ➄ A randomizer to use as the name for the client creation.

The one interesting piece to note is the randomizer. In our subscriber pattern, we

would only ever have one subscriber per server. There was never a chance of name

collisions. But here we are not really sure which publisher is using it, but also we could

have many simultaneous requests for the same publish, and we would not want to cause

client conflicts. Small note here, we are not pooling our connections yet. We ideally want

to do this since there could be an insane amount of clients being created.

Recording Module

Let’s make use of this new trait for our requests in the recording module. This module will

receive an endpoint /recording/:id/:type/:camera and will be responsible for sending

that to the MQ which will then get picked up by the IoT device. Let’s start in Listing 4-31

with setting up the struct we are going to convert that URL information into.

Listing 4-31. The middleware implementation; this will be in the file

actions/recording.rs

#[derive(Serialize, Deserialize, Debug)]

enum RecordingType { ①
 Start,

 Stop

}

#[derive(Serialize, Deserialize, Debug)]

struct Recording { ②
 uuid: Uuid,

 rtype: RecordingType

}

 ➀ The enum for the recording type.

 ➁ The Recording struct we are creating.

Chapter 4 Messaging and graphQL

171

Now let’s implement the run function will which process the iron request and send

the data over to the message queue. In Listing 4-32, we take the request data convert it to

a struct and then send that as JSON data to the recording/ topic.

Listing 4-32. The run endpoint for our recording; this will be in the file

actions/recording.rs

use crate::mqtt::middleware::MqttRequestExt;

use crate::mqtt::client::publish;

use rumqtt::QoS;

pub fn run(req: &mut Request) -> IronResult<Response> {

 info!("Recording Start/Stop");

 let recording = Recording { ①
 uuid: super::get_uuid_value(req, "id"),

 rtype: get_recording_type(req)

 };

 info!("Set Recording Type to : {:?}", recording);

 // Send the data over

 let (mut client, _) = req.mqtt_client(); ②
 let topic = format!("recording/{}", recording.uuid);

 let json = serde_json::to_string(&recording).unwrap(); ③

 publish(&mut client, topic.as_str(), json, QoS::AtLeastOnce); ④

 Ok(Response::with((status::Ok, "OK")))

}

fn get_recording_type(req: &Request) -> RecordingType {

 match super::get_value(req, "type").as_ref() {

 "start" => RecordingType::Start,

 "stop" => RecordingType::Stop,

 _ => panic!("You have bad code")

 }

}

Chapter 4 Messaging and graphQL

172

 ➀ Create the Recording struct based on the parameters supplied on

the URL.

 ➁ Call the mqtt_client from the middleware we just created; you will

notice the that we used “_” on the notification tuple return since we

will not use it.

 ➂ Convert the Recording struct to a JSON String.

 ➃ Call the publish on the MQ client and send over our payload to the

correct topic.

I have not included all the code to do all the value conversions; they are based off

the Router extension we used in the previous chapter, as well as some parsing. The code

is in the source material though, but we didn’t need to go over it. Also like I mentioned

earlier, we used a QoS of AtLeastOnce, since sending over multiple messages will not

alter the state of the device adversely.

While creating the middleware piece was a bit cumbersome, in the end, we now

have a very clean and easy-to-read code that can be replicated repeatedly for other MQ

publish scenarios.

 Summary
In this chapter, we focused on the GraphQL and messaging. The GraphQL is able to

replace using RESTful APIs and replace with a structured format. We can still perform

all our actions but in a more descriptive nature. GraphQL is very useful when sharing

between mobile and web applications as well. In addition, we went into MQTT

messaging; the MQTT is one of the keys to any IoT application because it allows us to

support communication with our devices even while offline. Message queues serve

that useful barrier of accepting outside commands even when the IoT device is down

(and vice versa but less likely to happen). In the next chapter, we will work more on the

retrieval_svc optimizing calls to it.

Chapter 4 Messaging and graphQL

173
© Joseph Faisal Nusairat 2020
J. F. Nusairat, Rust for the IoT, https://doi.org/10.1007/978-1-4842-5860-6_5

CHAPTER 5

Performance
One of the most common problems with any application and IoT ones in particular

is cost and performance. Remember IoT devices may have to transmit huge amounts

of data and depending on the device may have bad or random Internet connectivity

(think of an IoT-connected vehicle or a device outside your house far from your Wi-Fi

monitoring). We expect our devices to communicate quickly and without lag. No one

wants to send a command to the IoT device and wait too long for the command to be

processed by the device. This cost is not just in processing time, but it’s a practical cost;

cloud providers charge for the amount of data being transferred. Hence, you want to

reduce that cost, and there are essentially two ways:

 1. Reduce the amount of times you transfer data.

 2. Reduce the size of the data you transfer while still transmitting all

the information you need.

Another area of cost by cloud providers is the actual cost of the servers (the use of

CPU/RAM). We went over in the first chapter the difference in large and small instances.

And these all take an actual monetary cost in usage. And all of this is a balance between

performance and cost. You can have a super-fast app that handles many simultaneous

connections, but it may cost you money. And you may not make money off that app

minus the initial hardware sale (i.e., Nest cameras can stream for free but charge for

recording). There are a couple ways we can keep high performance and control cost. And

while there are different areas to achieve optimized performance, we will discuss and

optimize for two of them. The first is optimizing the actual computational cost of data

via the serialization and deserialization of data. This occurs while converting JSON to

Strings and vice versa. This often has a high CPU and I/O cost associated with it. Another

is your latency when making a request. Many of the requests perform numerous writings

to a database; what if on simple items like inserts we return a response immediately and

let the application perform the actual processing in the background?

https://doi.org/10.1007/978-1-4842-5860-6_5#DOI

174

There are many strategies in how to solve for these, but the two we will be using

in this chapter are Cap’n Proto and CQRS. These each handle different aspects of

processing.

CQRS is going to help solve the issue of response time to the user; it works by

allowing part of the process to happen and the rest of it being processed asynchronously.

The Cap’n Proto is going to be used to lower the cost of sending messages between

services both in size of the messages and also CPU and memory use of the services.

Before we start, I want to make it clear that neither of these solutions is 100% use

case solutions nor the “end all be all” to solve all problems. There are many who disagree

with using these models mostly for the amount of extra framework code necessary to run

them and also for potential increase where errors can occur. But these two topics I found

imperative to discuss if we are going to discuss modern IoT applications backend, since

they come up again and again. And at least now, you will be able to see for yourself if

you like them and can pick them for use in your IoT application. And I have used both at

times in IoT, so they are valuable tool sets to learn.

 Goals
After completing this chapter, we shall have covered the following topics:

 1. Understanding how and why we use CQRS and eventual

consistency for our applications.

 2. Implementing CQRS for Comment Adds/Deletes.

 3. Using Eventstore to integrate with our CQRS system to be used as

a storage for the events.

 4. Understanding the role of binary serialized data has in our

application.

 5. Implementing Cap’n Proto to serialize and deserialize a message.

 6. Implementing Cap’n Proto to use RPC to process a message.

In this code, we will be using three services: the message queue service, the retrieval

service, and a new health client service.

Chapter 5 performanCe

175

 CQRS
Command Query Responsibility and Segregation (CQRS) was a technology that

has been out for a while but was brought to your average developer by Martin

Fowler (@martinfowler) in 2011, in what is now a famous blog post about it

(https://martinfowler.com/bliki/CQRS.html). Fowler first learned about CQRS

from Greg Young (@gregyoung) who has quite a few great articles and videos on

CQRS if you want to learn even more. The heart of CQRS is about the separation of

layers – and separation of responsibility.

If you look back before 2011 (and even current day), many of our applications are

Create/Read/Update/Delete (CRUD) applications. These are your standard applications

that we often show in books, demos, and so on. Think of your bookstore model or, for

something even more advance, your taxes. In the end, we often feed your tax data into a

CRUD database. We then pull from this database with a set of queries. Figure 5-1 shows a

model of how this typically looks.

I’ve written these types of models many times, and they do work for the simplest of

cases and are perfect for a standard admin portal or to alter simple settings. The problem

can be when you go beyond your standard design. Most of the more interesting pages

involve complex queries that do not necessarily model the exact data we stored. For

example, we rarely just input a movie and want that movie. We may want a search for a

list of movies with Schwarzenegger or movies that are all the action flicks between 1980

and 1990 (the best decade ever for action movies). As these models for command (used

for the changing of data) and the querying become more complex, so do our need to

separate them. In Figure 5-2, we see how you’d separate out command and querying.

Figure 5-1. Your typical model for a CRUD interaction with a database

Chapter 5 performanCe

https://martinfowler.com/bliki/CQRS.html

176

This CQRS model allows us to separate the reads from the writes, not only from a

process point of view but a modelling one. The writes go through a command model

that writes to the database, and the querying goes through another set of services to read

from the database. In here, you have two processes running the client which will send a

command that gets written to the database. Then the client could also in another thread

or the same send a query that would retrieve from the data.

The other upside is that CQRS easily fits into other patterns that work well with it.

Martin Fowler identities five other patterns that fit well with CQRS:

• Task-based UI

• Event-based programming models

(https://martinfowler.com/eaaDev/EventNarrative.html)

• Eventual consistency (www.allthingsdistributed.com/

2008/12/eventually_consistent.html)

• Eager read derivation

(https://martinfowler.com/bliki/EagerReadDerivation.html)

• Event poster (https://martinfowler.com/bliki/EventPoster.html)

• Domain-driven design

Figure 5-2. Your most typical CQRS model

Chapter 5 performanCe

https://martinfowler.com/eaaDev/EventNarrative.html
https://www.allthingsdistributed.com/2008/12/eventually_consistent.html
https://www.allthingsdistributed.com/2008/12/eventually_consistent.html
https://martinfowler.com/bliki/EagerReadDerivation.html
https://martinfowler.com/bliki/EventPoster.html

177

I have provided links you can look at for a few of those; the one I am most interested

that fits our needs is eventual consistency. Eventual consistency is the idea that events

are eventually consistent. This means that when commit an event to our application, it

may not get persisted or processed right away, but eventually it will. This allows for quick

calls and responses from the server, while it goes ahead and processes the data. This

obviously only works well for nontransactional type data. With eventual consistency, the

events first stored to a write event store; this can be a traditional database or a streaming

database like eventstore. From there, the events get picked up and sent to the normal

CQRS pattern, and the data is now written to the CQRS database.

In this scenario, you have a read and write database. The read database is what the

client will call to perform its queries, and the write is the EC-tied database that the client

will call when performing a write operation. This can be a bit confusing, but realize the

read database gets written to by the CQRS; it’s just not directly written to by the client.

Part of the reasoning behind all this is also to create more readable and maintainable

code. When adding EC, we are going to add a secondary data store. (Note: This is not

necessary, but we are going to do it.) The architecture of this is listed in Figure 5-3.

Figure 5-3. Your typical model for a CQRS transaction

Chapter 5 performanCe

178

This puts an asynchronous layer between our event and the CQRS. The event handler

will receive the event and send it to the data store before sending a command to the event

handler. You end up with a read database and a write database. Although this can be a bit

confusing at first, the database you actually write to is the read database. This can help

in performance optimization for your system, if you perform writes more than reads or

reads more than writes. With developing microservices for a deployed application, you

always want to consider the cost to your deployed infrastructure; this can easily get eaten

up by a poor bloated design. Another interesting aspect is how reads/writes work with

eventual consistency; since all your work is stored in the writes, initially it becomes a

catalog of what has happened in the past. This will also allow you to rerun from certain

times in the past to repopulate your read database, even applying new logic if need be

along the way. However, be warned if you changed your Command or Event structure

along the way, this could lead to some duplicitous behavior.

Let’s break down step by step what happens in the command model. CQRS uses

particular labels and wording for each step.

 CQRS Steps
Each step has a particular purpose; in addition, in each step when we define the struct

or enum for it, we will use a certain set of grammar, noun, or verb. This isn’t a must of

course, but it’s the nomenclature most CQRS systems go for:

 1. Data will enter your controller from a RESTful or GraphQL

endpoint. This has already been written for us, and we will just

integrate with our existing code.

 2. In the controller, you will translate this to a command. Commands

dictate that there are actions to happen; hence, the command

enums are named as action verbs in the present tense. The

commands are a CQRS command that could be directly plugged

into the CQRS system or in our case will be sent to the event store.

This all depends on what the dispatcher is doing.

 3. From the command, you get fed into an Aggregate. The Aggregate

is the glue that combines everything together. The aggregate takes

the current state and applies the command to it, outputting an

event. In here the aggregator can ignore or use the previous state;

it’s up to you. We will get into more in our example.

Chapter 5 performanCe

179

 4. The aggregator will then return from it 0 to many events.

 5. The name of the event object should be in the past tense. This is

the action that has happened. We can use this to do a number of

tasks and triggers, and the event is where the CQRS framework

really interacts with the application.

In addition, depending on the CQRS system you are using, there are handlers and

managers. The biggest key to understand is the Command-Event-Aggregate model;

I have broken that out for you in Figure 5-4. This model is the flow most CQRS + EC

applications take in processing.

 Which CQRS to Use?
I hope this gives you a basic understanding of CQRS. I would also suggest reading

Martin’s blog on it. I’ve tried to cover enough for you to understand the problem and the

solution we are going for. The idea is simple in its nature but then gets more complex

when implementing. And this is where it gets a bit tricky for us in Rust. There isn’t one

Figure 5-4. The Command-Event-Aggregate model

Chapter 5 performanCe

180

“end all be all” fully functional CQRS applications. There are in other languages, but

like I’ve said before, Rust is only recently coming into its own on the Web. Part of that is

because the threading won’t be resolved till late 2019, and that is key for a good CQRS

solution. With my research, I found three solutions I liked:

 1. Riker CQRS – Seemed like a very basic but good base model, but

still seemed raw (https://github.com/riker-rs/riker-cqrs).

 2. Chronicle – This seemed very much on its way to be a full-fledged

CQRS, but work has stopped on it and hasn’t been worked on for

two years (https://github.com/brendanzab/chronicle).

 3. Event sourcing – Started off as a medium.com article, and then a

follow-up created a framework based on the second article. Still

very fresh and the author recently altered it and made it easier

and smoother to use (note to author of the crate, thanks I had to

rewrite this chapter because of it.) But in addition, I really liked

the Event Store database tie in which makes it easier for us to

perform eventual consistency along with it (https://github.com/

pholactery/eventsourcing).

None were what I’d consider full CQRS implementations, but for the book, we are

going to go with the third. It’s also easier and a better start than us trying to write our

own from scratch. I liked the passion behind event sourcing, and the added portion of

the eventstore gave it a good way to hook into the events once created. Again most

importantly, we are going over the concepts of CQRS in this section. We will use this one

going further. I believe what is really needed is a company to have a need for CQRS and

create an open source application that allows for a public and private input on it.

 Event Sourcing
The event sourcing crate creates a standard set of commands, aggregations, and

events. However, it’s how you use the events that is different than in other models. The

event sourcing can use (and we will use) Event Store database under the covers to

store all our writes. The Event Store database is an open source database that can allow

for 15,000 writes per second and 50,000 reads. This will allow our application to have

considerable throughput and only have to worry about bottleneck when we have to read

the event and then process the event. This database was designed for stream data, so it’s

a perfect fit for event sourcing (https://eventstore.org/).

Chapter 5 performanCe

https://github.com/riker-rs/riker-cqrs
https://github.com/brendanzab/chronicle
https://github.com/pholactery/eventsourcing
https://github.com/pholactery/eventsourcing
https://eventstore.org/

181

 Implementing in Our Application
The code in this demo application will be designed to work in the retrieval_svc, in our

/comment/add endpoint. This endpoint right now is called via a standard http command

that will call to our database and save a comment. This does not have any added

business functionality, but for now imagine other side effects could be calling out to a

notification server to let someone know of a new comment on their video.

Another reason to choose the comment adds is that this service is one of our

endpoints that could potentially receive heavy traffic. Because of that, we wanted to tie

eventual consistency with it. EC tells us that the application will EVENTUALLY be correct

and contain the right data. We are able to do this because of the Event Store we are using.

The actual work on the event will occur by monitoring the eventstore stream, allowing

us to return a response to the user before the event has been stored in the database.

Figure 5-5 illustrates our flow for the application.

The key to making this fast and responsive is we are able to continue processing

even after the controller returns to the user. This allows us to have a fast response to

acknowledge to the user that they received their comment but before the comment has

Figure 5-5. The flow of our application

Chapter 5 performanCe

182

actually been persisted, so make sure any validation occurs before we return. If after you

receive an acknowledgment you sent a delete, the beauty of the event stream is that it

will be queued up and will simply get processed after so you do not have to worry about

one event happening before another. It’s all a sequential ordering of processing.

 Gotchas

Because of the nature of EC, it is imperative you only do it for things where a

transactional state does not matter. In shopping carts, for example, you do not want to

confirm a purchase has been completed until the purchase has actually been completed

and the credit card is confirmed. However, I would argue in many of the transactions

we do not need this absolute level of control. Functions like changing the temperature

or turning a light on and off can be events that EC works great for. In the real world of

course, this isn’t taking minutes but maybe seconds at most, usually micro seconds, but

if you’ve ever worked with a database before, you know one of the longest aspects of your

CRUD interactions is the database persistence part.

Another thought about our use of eventual consistency is that it fits in very nicely

when you use GraphQL subscriptions. Since you may want acknowledgment when

a command has been fully processed and stored into the database, one can add a

subscription event to the user. With subscriptions, we can have socket notifications of a

change. In our example of a light turning on, you could request the light turn on and get

an immediate call back, and then in your actual section of code that shows the light is

on, it would send a socket request to your app notifying you it was successful. And then

your app can reflect the change accordingly. This allows good symmetry with low latency

in your application.

Of course, one of the best ways of learning for me is doing, so let’s implement the

application.

 Setting Up Our Environment
Let’s get started; to start, we mentioned we are using Event Store as the streaming

database to store the events. Much like our other services, we are going to use docker to

install it. We have done this a few times now, so you should be getting the hang of it. In

Listing 5-1, we retrieve the eventstore for local install.

Chapter 5 performanCe

183

Listing 5-1. Pull and install our event stream giving the name eventstore- node

docker pull eventstore/eventstore

docker run --name eventstore-node -it -p 2113:2113 -p 1113:1113 eventstore/

eventstore

Our Event Store will be named eventstore-node and will expose two ports for our

use. The 1113 will be used to launch and connect to our consumers of the eventstore.

The 2113 endpoint will be used to store our event into the eventstream and also will be

used as the port for the web application. Speaking of which, when running the docker

image, open the web browser that can browse the data. You can launch the application

at http://localhost:2113; the default admin account user is admin and the password is

changeit. Note on restart of docker or your computer, you will have to run docker start

eventstore-node to have the eventstore start up again.

 Cargo Update

Let’s open up your retrieval_svc application; this is the microservice we will be

updating to use CQRS. We are going to add the event sourcing crate to the application.

In Listing 5-2, we will add the event sourcing and event sourcing-derive crate.

Listing 5-2. Adding the event sourcing crates; this will be in the file Cargo.toml

event sourcing = { version = "0.1.5", features = ["orgeventstore"],

git = "https://github.com/nusairat/eventsourcing.git" }

event sourcing-derive = "0.1.3"

For the event store database

eventstore = "0.7.4"

I am using my own branch here, because I needed to add the functionality to add

user authentication when talking to the orgeventstore. By the time you read this, this

may not be necessary as the owner may have updated it by then. You will also notice we

activated the feature orgeventstore. The CQRS pattern requires that we store the events

into an intermediary store before it gets processed; this is the write store, and this is what

will be used to write to the Eventstore streaming database. Let’s start coding.

Chapter 5 performanCe

184

 Creating Our CQRS Objects
First off, we are going to start by creating the necessary command and event objects.

The command and event are what drives the CQRS system to save to the database.

Comments are made of three items:

• id – This is the UUID that identifies a unique comment.

• body – This is the actual comment text.

• media_item_id – This is the video or picture the comment is

referencing.

Ideally, we’d also have a user, but in our imagery world, all comments are

anonymous. We are going to achieve two functions for this:

• Adding – Adding a comment to the database

• Deleting – Deleting a comment from the database

Both of these will require a command and a corresponding event. In addition, we

want to group all CQRS commands and events for a particular type together via an

enum. We will thus create two enums CommentCommand and CommentEvent that will

contain an entry for adding and deleting.

 Command and Event

In Listing 5-3, we have the CommentCommand and CommentEvent defined for our add and

delete comment.

Listing 5-3. Adding the event sourcing command and events; this will be in the

file src/domain.rs

use uuid::Uuid;

use event sourcing::prelude::*; ①
use event sourcing::Result;

use event sourcing::eventstore::EventStore;

use serde_derive::{Serialize, Deserialize};

use crate::database::PgPooled;

const DOMAIN_VERSION: &str = "1.0";

Chapter 5 performanCe

185

pub enum CommentCommand { ②
AddComment { body: String, media_item_id: Option<Uuid> },

 DeleteComment { id: Uuid }

}

#[derive(Serialize, Deserialize, Debug, Clone, Event)]

#[event_type_version(DOMAIN_VERSION)] ③
#[event_source("events://iot-rust/comment")]

pub enum CommentEvent {

 CommentAdded { id: Uuid, body: String, media_item_id: Option<Uuid> }, ④
 CommentDeleted { id: Uuid }

}

 ➀ Crate imports we need for the macros and traits for CQRS.

 ➁ Our enumeration keeping all of our different events.

 ➂ Adding the macro to define these event types and defining a source

for the events. Also defining an event_source, you can set this to

something unique often reflecting your git entry.

 ➃ Our CommentAdded event.

There are a few things to highlight in this code. The first thing you will notice is while

each event is a struct, they are a struct in an enum. This is mostly to allow more concise

processing and boilerplate code. Also recall earlier I said to label commands as verbs in

the present tense and events as verbs in past tense. You will see that we have “Add” and

“Delete” both verbs in the present and “Added” and “Deleted” both verbs in the past

tense.

We also did group all the comments together; if we had another, we could have

a MediaData one to group all the media data changes. This can be a bit confusing

to look at initially, but does make it easier to process when we get to the aggregate

phase.

Chapter 5 performanCe

186

After writing quite a bit of CQRS, there are two fairly common patterns I’ve

encountered when tieing commands with events:

 1. Command → event directly – The one-to-one ratio pattern. Like

in our system, each command will create exactly one event to

process the command.

 2. Command → multiple events – Not all systems create one

command to one event; in this pattern, your command can

spurn multiple events. We aren’t doing this for this particular

task, but a comment could trigger the database addition, but also

could trigger notification being sent to the original poster that

a comment was posted. You would want to treat these as two

different events.

But the route we go all depends on what we decide in the aggregator.

 Aggregator

The Aggregator in CQRS moves the command to the event phase. In our event sourcing

crate, it is a trait that we will implement for our comments. The trait is defined in the

crate as having these functions listed in Listing 5-4.

Listing 5-4. The Aggregate trait. This is defined in the event sourcing source

pub trait Aggregate {

 type Event: Event;

 type Command;

 type State: AggregateState + Clone;

 fn apply_event(state: &Self::State, evt: Self::Event) ->

Result<Self::State>;

 fn handle_command(state: &Self::State, cmd: Self::Command) ->

Result<Vec<Self::Event>>;

 fn apply_all(state: &Self::State, evts: &[Self::Event]) ->

Result<Self::State>;

}

Chapter 5 performanCe

187

Here you define the Event, the Command, and the State. The command and the event

we already discussed, and the state we only briefly touched. The state is the current state of

the event. It’s used and altered as we go along and can be used to know what happened the

previous time a comment was added. The apply_event will apply the events to the current

state producing a new state; this is called when re-recording what happened. The handle_

command is what will produce 0 to many events from a command. And the apply_all will

reapply all events on the package. In our application, we are going to create just one event

per command; however, we have this defined in Listing 5-5.

Listing 5-5. The aggregate and the states for our application; this will be in the

file src/domain.rs

#[derive(Debug, Clone)]

pub struct CommentState { ①
pub body: String,

 pub media_item_id: Option<Uuid>,

 pub generation: u64

}

impl AggregateState for CommentState { ②
fn generation(&self) -> u64 {

 self.generation

}

}

pub struct CommentAggregate;

impl Aggregate for CommentAggregate { ③
type Event = CommentEvent; ④
type Command = CommentCommand;

 type State = CommentState;

 // Apply events to state, producing new state.

 fn apply_event(state: &Self::State, event: &Self::Event) ->

Result<Self::State> { ⑤
 info!("Apply event");

 // needs to implement the event on the state itself

 unimplemented!()

 }

Chapter 5 performanCe

188

 /// 2. Handle commands, producing a vector of outbound events, likely

candidates for publication.

 fn handle_command(_state: &Self::State, cmd: &Self::Command) ->

Result<Vec<Self::Event>> { ⑥
 info!("Handle Command");

 // validate

 // Only if validation passes return the events for it

 Ok(vec![cmd.into()]) ⑦
 }

}

 ➀ The CommentState is our struct that defines the state; this should

include properties from the command and event.

 ➁ The AggregateState is a trait from event sourcing that at each state

produces a new state with a one higher sequence number.

 ➂ The CommentAggregate is an aggregate without properties that

implements the Aggregate trait we mentioned before.

 ➃ We define the Event, Command, and State to match the

CommentEvent, CommentCommand, and CommentState we

created early. These will be the events.

 ➄ The apply_event method; we are not implementing this for now.

 ➅ The handle_comand that will funnel our commands we created.

 ➆ An into on the command to convert the command to the events we

created.

Few things to dive deeper here, inside the handle_command, we can add validators

and converters if needed to change the command to an event. We aren’t going to define

any here since we are relying on the validation on the client side, which we own. The

second part is the into; this actually gets derived when you define the From trait on a

struct. The trait method will take in its Self and return another predefined struct that

is converted. We are going to use this in Listing 5-6 to create the enum event from the

enum commands.

Chapter 5 performanCe

189

Listing 5-6. Implementation of the From trait on the CommentCommand; this

will be in the file src/domain.rs

// Used to convert from one type to another

impl From<&CommentCommand> for CommentEvent { ①
 fn from(source: &CommentCommand) -> Self { ②
 match source {

 CommentCommand::AddComment{body, media_item_id} => { ③
 CommentEvent::CommentAdded{

 id: Uuid::new_v4(), ④
 body: body.to_string(),

 media_item_id: *media_item_id

 }

 },

 CommentCommand::DeleteComment { id } =>

CommentEvent::CommentDeleted { id: *id } ⑤
 }

 }

}

 ➀ Implementation of the From trait on the CommentCommand for the

CommentEvent.

 ➁ The only function that needs to be implemented is the from.

 ➂ Matches the AddComment.

 ➃ This is where we create the Uuid for the event.

 ➄ Matches for the DeleteComment creating a CommentDeleted event.

 Dispatcher

Now we have our command, event, state, and aggregate working; the last piece that is

needed to tie it all together is the dispatcher. The dispatcher or router in other CQRS

frameworks is what’s going to feed in event and move it through the system with the

output of the dispatch being a CloudEvent. We have the event defined in Listing 5-7.

Chapter 5 performanCe

190

Listing 5-7. The Dispatcher trait; this is defined in the event sourcing source

pub trait Dispatcher {

 type Command;

 type Event: Event;

 type State: AggregateState;

 type Aggregate: Aggregate<Event = Self::Event, Command = Self::Command,

State = Self::State>;

 fn dispatch(

 state: &Self::State,

 cmd: Self::Command,

 store: &impl EventStore,

 stream: &str,

) -> Vec<Result<CloudEvent>>;

}

This is a trait the user can define for whatever their implementation. Luckily for us

the framework hooks into the Event Store; we will use the derive macro to create the

dispatcher, which will tell the dispatcher which aggregate to use. In Listing 5-8, we have

defined our dispatcher with the CommentAggregate.

Listing 5-8. Implementation of the CommentDispatcher; this will be in the file

src/domain.rs

#[derive(Dispatcher)]

#[aggregate(CommentAggregate)]

pub struct CommentDispatcher;

 Calling Our Commanded Endpoint
At this point, we have everything created for the CQRS to make it functional, but alas,

there are two steps left to make this work in our application. The first and most obvious

is calling the dispatcher with our command. This will require us to do a few things;

the first and most obvious is create the command itself and to have it dispatched. The

second and not as obvious is create the state; this will define the initial state, although

for comments right now they are additive. If we added a modified, we would use the

Chapter 5 performanCe

191

UUID to track and know what the previous state is. This can be useful in tracking

adds vs. updates or if you want to perform a different function based on the previous

properties. I’ve used this mostly for tracking statuses and determining difference if a

status moves from one state to another.

We are going to be having the events called by a GraphQL mutation as opposed to

a RESTful endpoint, so the code will replace the graphql/context/add_comment we

created in the previous chapter and will now call our own CQRS version.

But first, we need to make some alterations to the Mutations struct itself; it will need

a reference to the OrgEventStore so that we can pass the command to the event stream.

There are a few modifications we will need to make one in http.rs and the other in

schema.rs; we will place those both in Listing 5-9.

Listing 5-9. Instantiating the OrgEventStore and passing it to mutations, in the

file src/http.rs

#[cfg(feature = "cqrs")]

pub fn start(server: &str, port: u16, auth_server: &str, database_url:

&str, event_store_host: &str, event_store_port: u16, ①
 event_store_user: String, event_store_pass: String) {

 use juniper_iron::{GraphQLHandler, GraphiQLHandler, PlaygroundHandler};

 use juniper::{EmptyMutation, FieldResult};

 use crate::graphql::context::{Context, context_factory, Root, Mutations};

 use event sourcing::eventstore::OrgEventStore;

 // mounts the router to the

 let mut mount = Mount::new();

 // Api Routes we will setup and support

 let router = create_routes();

 mount.mount("/api", router);

 // need to pass in the endpoint we want in the mount below

 // no subscription URL

 let playground = PlaygroundHandler::new("/graph");

Chapter 5 performanCe

192

 // Setup for Org EventStore

 let event_store = OrgEventStore::new_with_auth(event_store_host,

event_store_port, ②
 event_store_user, event_

store_pass);

 let graphql_endpoint = GraphQLHandler::new(

 context_factory, Root,

 Mutations{org_event_store:

event_store} ③
);

 ➀ Pass the eventstore user, password, host, and port to the function;

this will be derived from command args module we have been using

previously.

 ➁ Create the OrgEventStore struct from the given variable.

 ➂ Pass that variable to our mutations.

Now in Listing 5-10, let’s update the Mutation struct to include the OrgEventStruct.

Listing 5-10. Instantiating the OrgEventStore and passing it to mutations, in the

file src/graphql/context.rs

#[cfg(feature = "cqrs")]

pub struct Mutations {

 pub org_event_store: event sourcing::eventstore::OrgEventStore

}

Finally, let’s update add_comment in Listing 5-11 which will take the mutation data

passed in, creating a command and executing the dispatcher, which will add it to the

event stream.

Chapter 5 performanCe

193

Listing 5-11. The media_add iron request; this will be in the file

src/graphql/context.rs

#[cfg(feature = "cqrs")]

fn add_comment(mutations: &Mutations, context: &Context, media_item_id:

Uuid, body: String) -> Uuid {

 comment_add(&mutations.org_event_store, media_item_id, body.as_str())

}

use crate::domain::{CommentCommand, CommentState, CommentDispatcher,

CommentEvent};

use crate::models::health_check::HealthData;

// Send via the CQRS

pub fn comment_add(eventstore: &OrgEventStore, media_id: Uuid, comment:

&str) -> Uuid {

 use uuid::Uuid;

 // dispatcher trait

 use event sourcing::Dispatcher; ①
 // For the event sourcing

 use event sourcing::eventstore::OrgEventStore; ②

 // You create the command you want to execute

 let command = CommentCommand::AddComment { ③
 body: comment.to_string(),

 media_item_id: Some(media_id),

 };

 // our state, the initial one, aggregate should emit this.

 // this is the returned state that should then be used for subsequent

calls

 let state = CommentState { ④
 body: "".to_string(),

 media_item_id: None,

 generation: 0

 };

Chapter 5 performanCe

194

 // Successful call will return the Event

 debug!("Dispatch ...");

 let res = CommentDispatcher::dispatch(&state, &command, eventstore.

clone(), crate::cqrs::STREAM_ID.clone()); ⑤
 let data = &res[0].as_ref().unwrap().data; ⑥
 let id = data.get("CommentAdded").unwrap().get("id").unwrap();

 let uuid_created = match id {

 serde_json::Value::String(st) => {

 Some(Uuid::parse_str(st).unwrap())

 },

 _ => { None }

 };

 uuid_created.unwrap() ⑦
}

 ➀ Adds the trait for the dispatcher.

 ➁ Also loads the OrgEventStore that we will use to define the

destination for the event.

 ➂ Defines our AddComment command.

 ➃ Our initialized state for the comment.

 ➄ Runs the Dispatcher passing in our state, command, the store, and

the stream name to store the comment against.

 ➅ Gets the return from the dispatcher which will be the event, and

retrieving the id we created for it so we can return to the user the ID

that was created.

 ➆ Returns the UUID created for the object back to the mutation. The

caller can then use this UUID to perform a subscription, query, and

others on the comment after it gets saved.

Bullet 6 is critical; you will notice the last parameter we are using is a constant; this

is set in a different module that we will get to in a bit. Just realize the value stored is

my_comment; this is the stream name, and knowing the name will become important in a

bit. We are going to be using persistent streams so the stream data will be saved during

restarts. We will use this name again later to retrieve the stream and also when viewing

the stream on the Event Store website.

Chapter 5 performanCe

195

Bullet 7 if you aren’t familiar with Rust is a bit of a mess, and the reason is the

application returns the CloudEvent, but the data we are really interested is on the event

which is buried in there in a vector (remember commands can return 0 to many events).

At this point, go ahead and run the application and make a sample request to the

comment. You will use the mutation code you wrote in Listing 4-11 to write a comment

out. You will get a UUID returned.

In addition, we can view the comment in the stream itself. When you started

eventstore, you exposed a web port at 2113. If you go to http://localhost:2113/, you

will be asked to log in using the generic username and password for eventstore which are

admin and changeit, respectively. Once logged in, click Stream Browser at top; you will

get an image that looks like Figure 5-6.

We are using persistent streams, and if we have added to it, you should see our

stream name under Recently Changed Streams. Click the name my_comment to get

a detailed list of all the streams; if you’ve run this a few times, it should look like

Figure 5-7.

Figure 5-6. The Event Store browser stream

Chapter 5 performanCe

196

And finally, if you click one of the stream names, you will see the data that was

passed into the stream in Figure 5-8. Reviewing the data can be useful for debugging or

just monitoring.

Figure 5-7. The list of streams for my_comment

Figure 5-8. The details of one stream event

Chapter 5 performanCe

197

 Processing the Event Stream
At this point, we have submitted the data to the event stream; we can verify that it is in

the event stream; now let’s process it. Out of the box the event sourcing package does

not have event handlers. It’s common for projects at this level, but more full-fledged

CQRS systems do have that. But that is why we are writing to the eventstore which does

have quite a bit of hooks we can create to handle the events stored. We are going to go

over how to create a struct to actually handle the events as well as the framework to

subscribe to the stream we created earlier for comments. I’ll also show you how these are

handled asynchronously to allow continued processing while our application runs. Since

we are performing asynchronous operations, we will need to make sure to import tokio

into our Cargo.toml in Listing 5-12.

Listing 5-12. Use the tokio dependencies; this will be in the file Cargo.toml

tokio = { version = "0.2.17", features = ["full"] }

futures = "0.3"

async-std = "1.5"

 Creating the Executor

First up is what I am calling the Executor; this is where the actual business logic will take

place for processing the CommentAdded event. This set of logic will have no knowledge of

the eventstore and even the CQRS system. We will create a trait with a run method for

the CommentEvent, and when anyone calls it, it will execute an add on the comment. In

Listing 5-13, we have that code.

Listing 5-13. The executor trait and implementation of it; this will be in the file

src/domain.rs

pub trait Executor { ①
 fn run(&self, pool: &PgPooled) -> bool;

}

impl Executor for CommentEvent {

 fn run(&self, pool: &PgPooled) -> bool {

 debug!("Execute our comment {:?}", &self);

 match &self {

Chapter 5 performanCe

198

 CommentEvent::CommentAdded{ id, body, media_item_id }=> { ②
 comment_add(id, body, media_item_id, pool)

 },

 _ => false

 }

 }

}

fn comment_add(id: &Uuid, body: &String, media_item_id: &Option<Uuid>,

pool: &PgPooled) -> bool { ③
 use std::{thread, time};

 use crate::models::comment::Comment;;

 info!("Execute our add Comment '{}' / {:?}", body, media_item_id);

 info!("----> {}", id);

 // TODO Store the comment data

 Comment::add(pool, media_item_id.unwrap(), body.to_string()) > 0 ④
}

 ➀ Our executor trait; this is designed to be generic so our handlers later

can run on any enum that implements this trait.

 ➁ Implementation for the CommentAdded event.

 ➂ The function that does the actual work; this would convert the enum

to our data store and store it.

 ➃ Save the data to the database.

This function right now is not interacting with our database; you can add that or you

will find it in the master code. I have added a temporary 5-second delay, so we can view

this in the order of which the responses get processed in our code. Now that we have the

executor written to handle processing our events, let’s see where this gets called at.

 Subscription Stream Monitor

Now that we have the executor, we still need to retrieve the data from the event stream.

This part of the code is immaterial to using event sourcing, and you could use it for

any set of applications that wanted to interact with EventStore database. We will write

Chapter 5 performanCe

199

a consumer that can retrieve events for a particular message queue and process them.

When we retrieve an item off the queue, the data brought back is not only the event itself,

but metadata about the event, when it was added, what stream, the order it was received,

and so on.

This is going to take three steps for us to create, and we will perform this in reverse

order of how the code flows:

 1. Create our subscription handler; this will monitor the my_comment

stream for new data; when the data is received, it will then retrieve

the data and execute our Executor we just created against it.

 2. Create a connection to the event store; this set of code will create a

connection and pass it to the subscription for monitoring.

 3. In our main module, we will configure the http runners to run

both the http service and the cqrs service, since we need both

running to have our application work.

Reading the Connection Stream

Starting with reading the connection stream, we are going to first create the persistent

connection and then connect to it. The first step is optional if the connection already

exists, but seems no harm in having it. Afterward, we will retrieve the stream data, get the

event and convert it to a CommentEvent, and then call our executor. In Listing 5-14, we

have the subscription function.

Listing 5-14. Creates the asynchronous connection to the stream and processes

any messages against it; this will be in the file src/cqrs.rs

// Constants

pub const STREAM_ID: &str = "my_comment";

const GROUP_NAME: &str = "server_group";

async fn subscription(connection: &Connection, database_url: &str)

 -> Result<(), Box<dyn Error>> {

 use crate::domain::Executor; ①
 info!("Start Subscription ...");

Chapter 5 performanCe

200

 // Can do programmatically or create here

 let _ = connection ②
 .create_persistent_subscription(STREAM_ID.clone(), GROUP_NAME)

 .execute()

 .await?;

 let (mut sub_read, mut sub_write) = connection ③
 .connect_persistent_subscription(STREAM_ID.clone(), GROUP_NAME)

 .execute();

 // Database Connection

 let pool = establish_conn(database_url);

 // Iterate over to send the event

 while let Some(event) = sub_read.read_next().await { ④
 let originalEvent = event.inner.get_original_event(); ⑤
 let mut data: crate::domain::CommentEvent = originalEvent.as_

json().unwrap(); ⑥
 info!("Data From Stream >> {:?}", data);

 data.run(&pool); ⑦

 sub_write.ack_event(event).await;

 }

 Ok(())

}

 ➀ Uses the executor trait to allow us to run the struct we are receiving.

 ➁ Creates the persistent connection stream my_comment.

 ➂ Subscribes to the stream returning a reader and writer to it. The

reader will read the events, and the write will be used to acknowledge

the events were read.

 ➃ Starts our look of reading in the stream.

 ➄ Retrieves the next available event from the stream.

 ➅ Converts the event to JSON and we deserialize that json to a struct.

 ➆ Runs the executor we created in Listing 5-13.

Chapter 5 performanCe

201

This subscription handles only the events on my_comment; if we had more events to

monitor, we’d have to create more subscription calls for each, although in that case, we

could have created a more generic method that would take in stream parameters.

Creating Connection to Stream

Next in Listing 5-15, we will create a single-node connection to the EventStore server and

pass in our subscription stream.

Listing 5-15. The creation of the subscription connection to the server; this will

be in the file src/cqrs.rs

#[tokio::main]

pub async fn start(database_url: &str, host: &str, port: u16) {

 use std::net::ToSocketAddrs;

 let url = format!("{}:{}", host, port);

 debug!("Connect to : {:?} and database : {:?}", url, database_url);

 info!("ES Connect :: {:?}", url);

 // Create socket address.

 let endpoint = url.to_socket_addrs().unwrap().next().unwrap(); ①

 // start up our connector

 let connection = Connection::builder() ②
 .single_node_connection(endpoint)

 .await;

 // Subscription

 subscription(&connection, database_url).await; ③
}

 ➀ Converts the URL to a SocketAddr.

 ➁ Creates a single-node connection.

 ➂ Calls the subscription asynchronous function awaiting its processing.

Chapter 5 performanCe

202

Launching the CQRS Monitor Service

Finally, we need to launch this monitoring of the eventstore. This isn’t a server, but it is

an asynchronous process that will monitor the CQRS; in addition, you will have to also

launch the http server that we had created earlier. Few areas to watch out for, we are

using variable names like the event store host in both the http and the cqrs monitor (one

to send one to receive). We had to clone those. We are also creating threads for each of

the runs. This will allow us to run and launch both sets of the puzzle in Listing 5-16.

Listing 5-16. The launcher for HTTP and the EventStore monitor; this will be in

the file src/main.rs

#[cfg(feature = "cqrs")]

fn run_http(app: Application) {

 use std::thread;

 let server = app.server;

 let port = app.port;

 let auth_server = app.auth_server;

 let database = app.database.clone();

 let es_host = app.event_store_host.clone();

 let es_port = app.event_store_port;

 let es_user = app.event_store_user;

 let es_pass = app.event_store_pass;

 let es_web_port = app.event_store_web_port;

 // For CQRS call

 let es_host_cq = app.event_store_host;

 let es_port_cq = app.event_store_port;

 let db = app.database.clone();

 let mut children = vec![];

 children.push(thread::spawn(move || {

 info!("Starting up application");

 http::start(server.as_str(), port, auth_server.as_str(),

database.as_str(),

Chapter 5 performanCe

203

 es_host.as_str(), es_web_port.clone(),

 es_user, es_pass);

 }));

 children.push(thread::spawn(move || {

 info!("Starting up CQRS");

 cqrs::start(db.as_str(),es_host_cq.as_str(), es_port_cq);

 }));

 // Now join execute

 for child in children {

 // Wait for the thread to finish. Returns a result.

 let _ = child.join();

 }

}

Run It All

At this point, you can start up the demo and run the application and then send a

GraphQL call to the application; you will notice output similar to Listing 5-17. One of the

big takeaways from the output is you will notice we are still processing even after we have

returned to the client, and that is the beauty of eventual consistency.

Listing 5-17. This is the shell of our run of the code

INFO cqrs > Start it up!

START!

 INFO cqrs::http > Start Server on localhost:8888

 INFO eventstore::internal::driver > Connection established:

7ede7b5c- 7e87- 45e6-8c9a-cb235f11e2c8 on V6([::1]:1113).

 INFO eventstore::internal::driver > Connection identified:

7ede7b5c-7e87- 45e6-8c9a-cb235f11e2c8 on V6([::1]:1113).

 INFO eventstore::internal::operations > Persistent subscription

connection [37d9416e-8cf1-4b9d-960a-5cd3984bb002] is confirmed

COMMENTADD!

 INFO cqrs::domain > Handle Command

Chapter 5 performanCe

204

HERE2 >> CommentAdded { id: cfd879ab-7fc3-47ae-9e18-e9610a431409, body:

"Our generic comment needs to be fed in", media_item_id:

Some(fdf222ba- 7de4- 45b8-b5e2-dcdf69d986f4) }

ITS A STRING!

 INFO cqrs::http > ID value :: Some(cfd879ab-7fc3-

47ae-9e18-e9610a431409)

 INFO cqrs::http > Return to Client :: {"uuid":

"cfd879ab-7fc3-47ae-9e18-

e9610a431409"}

 INFO cqrs::domain > Execute our add Comment 'Our

generic comment needs to be fed

in' / Some(fdf222ba-7de4-45b8-

b5e2-dcdf69d986f4)

 INFO cqrs::domain > ----> cfd879ab-7fc3-47ae-9e18-

e9610a431409

We have implemented a basic CQRS pattern that hopefully creates a smoother and

faster comment add and delete for the end user.

 Cap’n Proto
The second part of this chapter is going to deal with our "insanely fast data

interchangeable format and and capability-based RPC system" (the Cap in Cap’n is from

the capability-based ACL).1 This is another technology that has been out for a while but

only really made popular in the last 3–5 years. And it makes sense based on what they

are for. Cap’n Proto was inspired by and similar in structure and function to protocol

buffers (Protobuf) which are used for serializing and deserializing of structured data and

performing this task efficiently, meaning speed and memory use. The original purpose

of protocol buffers was for data exchange between systems. Protobufs were first created

by Google in 2001 and first made publicly available in 2008. This allowed Google to store

and transmit structured data between systems at Google. They specifically use Remote

Procedure Call (RPC) as the communications mechanism between the systems. All of

this is to lead to quick speed and low latency between systems.

1 https://capnproto.org/

Chapter 5 performanCe

https://capnproto.org/

205

They came about as a way to replace XML as the messaging data between systems

(remember this was 2001), but today it is used as a replacement for JSON as well. Using

XML was always an expensive operation for highly scalable systems, but it allowed

easily reproducible and verifiable structure. And while JSON grew to replace XML, it still

suffers from some performance despite its more compact size to XML. There is still a

large serialization/deserialization cost. In addition, JSON’s advantage is it does not need

to be structured data, but that can also be a disadvantage. Cap’n Proto and Protobufs

both allow for structured data that also is much faster to serialize and deserialize. Both

pass around and create messages; the messages can not only define the data but also

the structure of the endpoints to be executed against. Once you create the message, they

are serialized into binary structure that is not self-describing, meaning that without the

format translating, you will not know what is in the structure just by looking at it. This

does make it a bit more secure, but also can make debugging a bit harder since you can’t

just watch what messages get transmitted.

While Protobuf was originally written in C++, there are various translations for

other languages; this particularly is needed given the nature of Protobufs being used to

transmit data between services either via RPC or other means. The Protobuf message

though is written in a language-agnostic way; in Listing 5-18 is an example of a message

for a health check.

Listing 5-18. Example of a simple Health message Google Protobuf

syntax = "proto2";

message Health {

 required string uuid = 1;

 required int64 timestamp = 2;

 required string status = 3

 optional string msg = 4;

}

A few important takeaways here, when we create the messages, we define the type

for each property. This is necessary so we know how to translate the byte data back;

in addition, you will notice the sequential number after. The number is there to define

the order of fields; good rule of thumb is to always be additive in order to preserve

backward compatibility with older messages. Since you will still be able to translate old

Chapter 5 performanCe

206

version if you are only adding new fields. As I mentioned, there are a variety of Protobuf

implementations; you can find the different implementations on the github page for

Protobuf (https://github.com/protocolbuffers/protobuf).

 Cap’n Proto
For our implementation, we aren’t going to use the standard Protobuf by Google; we are

going to use Cap’n Proto, which is a competitor to Protofbuf’s but as I said is very similar

in nature and structure. This is a framework originally designed by Kenton Varda, the

primary author of protocol buffers version 2, and is property of Sandstorm.io, of which

he’s a co-founder of. And what makes it cooler is the encoding/decoding step is basically

nonexistent, making it faster and more cpu efficient. Cap’n Proto is designed to make use

of the way a CPU runs in order to make the data creation as optimized as possible. It uses

little-endian byte order in order to create objects of fixed widths, fixed offsets, and proper

alignment. Any elements that do not have a fixed size like lists are embedded as pointers;

however, even those are optimized to be offset based and independent.

As you’d expect, all of this leads to messages that are much smaller than your JSON,

but in addition to make it even smaller, there is a Cap’n Proto compression schema to

remove all the zero bytes and make the messages even smaller. In most tests, this leads

to same or smaller messages than Protobufs as well (one reason why we are using Cap’n

Proto).

One small note, the preceding data is based on documentation from the Cap’n Proto

page. I have not had a chance to run the numbers myself yet.

 Advantages of Cap’n Proto

However, these are not the only advantages for Cap’n Proto; there are many more

advertised advantages to Cap’n Proto. You can read the documentation for a complete

listing, but here is a highlight of a few:

• Incremental reads – You can read in the message before all the inner

objects of the message have been received. This is due to using

pointers for those objects as opposed to be read sequentially.

• Single property reads – You can read just one property without

parsing all the properties; this is due to the properties being of fixed

order and size.

Chapter 5 performanCe

https://github.com/protocolbuffers/protobuf

207

• Memory map – You can read all the properties in memory without

having the OS access it.

• Inter-language support – Cap’n Proto supports multiple languages,

meaning it serves as a perfect resource to communicate between

applications.

• Inter-process messaging – You can share messages via memory

between multiple processes running on the same machine, meaning

there is no CPU cost.

• Memory allocation – Cap’n Proto uses an "arena" or "region" style of

allocating to avoid issues that Protobuf had with memory allocation

bogging down the system.

• Smaller – Both the code generation and the libraries are smaller in

Cap’n than in Protobuf.

• RPC – The RPC allows for the call result to be returned before the

request comes back to the server. They call this the time travelling

RPC.

If you have any more questions about Cap’n Proto, check out their documentation at

their site https://capnproto.org/ for a more in-depth look.

 Cap’n Proto RPC

While we can transfer Cap’n Proto and Protobuf messages via any mechanism, the main

mechanism it uses for dispatching patches to other subroutines is via RPC. RPC allows

inter-processing communication and will communicate with different virtual addresses

even though the physical address is the same. RPC used to be much more popular

before REST and was the standard way of communicating between services, often as

SOAP (or XML-RPC). RPC works by exposing public methods that two systems can then

communicate between as long as at least one implements the server (of course, if the

other doesn’t, it can only serve as a client sending messages to that system and receiving

responses). However, the use of SOAP to transmit message data often with XML became

heavy. There were extra calls and processing, and the code was more complicated. REST

gave you easier and smaller payloads with less of the headache, but you also lost much of

the ability to create guaranteed contracts both on endpoints and payloads.

Chapter 5 performanCe

https://capnproto.org/

208

Cap’n Proto implements four different feature levels:

 1. The use of promise and futures pipelining to make requests.

 2. Restore and save, allowing persistent capabilities of the message.

This allows you to save your message returning a token that then

allows you to restore that message later.

 3. Multi-machine interactions. This allows you to have three-way

interactions between Cap’n Proto vats. With three-way vats, you

can have machine #1 call to machine #2 a reference to machine

#3, and machine #2 will be able to retrieve that reference.

 4. This builds up on Level 2, but allows you to have multiple machines

guaranteeing the integrity of the data you stored. This is the basis

of how many distributed data systems work; it forces all the data

to point to the same underlying objects. It also makes it harder to

hack, since if you only get access to one server, you won’t be able to

change the underlying data without also accessing another vat.

 Cap’n Proto for Rust

I mentioned earlier that there are multiple languages and framework support for both

Protobuf and Cap’n Proto; most major languages have implementations for at least

the messaging portion; luckily for us, Rust has a crate that implements the messaging

and the RPC (to note there is no Java packages for the RPC). The crate we are going to

use is by David Renshaw (@dwrensha) and is a pretty full functional implementation

with some great examples in the code. Some of the examples assume you have a good

knowledge of Cap’n Proto, so hopefully here we can go through how to implement this in

our code with some more detailed explanations.

Implementing in Our Application

Our implementation will be a replacement for an earlier service we wrote, the health

check. If you recall earlier, the health check sent out a status to the MQTT that we would

then take and forward to our database service. In that service, our MQ accepted a JSON,

converted to a struct and forwarded on to the next service.

We are going to adjust our normal process we did for health check retrieval and

storage to the database. Before we did your normal flow from client to message queue

Chapter 5 performanCe

209

to our retrieval service passing JSON between each layer. However, performing this

the traditional way took more processing in not only size but also CPU cost for our

serialization and deserialization. Let’s look at the difference in steps in Table 5-1 between

how we accomplished this with JSON and how we will accomplish this with the Cap’n.

The preceding data will serve as a guide to what we are building this chapter. To do

this, we are going to have to add Cap’n Proto in three microservices:

• client – This will be our generic client that will send health data to the

MQ; this code will eventually be used on our Raspberry Pi.

• mqtt_service – This will be the gateway on the MQ that will pick up

the health data sent from the client and then forward the data to the

retrieval_svc via RPC.

• retrieval_svc – This will receive the health data via RPC and store it to the

database; this is where our last and only serialization step will occur.

Table 5-1. Cap’n Proto vs. JSON

Area JSON Cap’n Proto

Client Create the struct for

the health check and then

serialize to JSon.

Create the Cap’n proto message for the health check.

Sending to

mQtt

message is sent as JSon. message is sent as Cap’n proto.

receive from

mQtt

receives byte array

serialized to JSon.

received byte array creating a proto message (note:

Since we aren’t examining the data here, we don’t

serialize any of the parts).

Send to

retrieval Svc

Sends via http request to

retrieval_svc.

Sends via rpC to retrieval_svc.

In retrieval

Svc

http endpoint is picked up

serialized to JSon.

rpC endpoint is picked up.

Saving to the

database

JSon is converted to a

struct and saved to the

database with diesel.

proto message is converted to a struct and saved to

the database.

Chapter 5 performanCe

210

Installing Cap’n Proto

Regardless of the implementation of Rust you are using, they all require the Cap’n Proto

C++ binaries. The binaries are required by the capnp builders to generate the source code

for the messages. This is what helps to make the messages universal across applications.

There are a variety of ways to install the binaries; if you are on Mac, you can use brew

install capnp; if you aren’t, head to https://capnproto.org/install.html and

follow the various instructions for your system, including downloading the git binaries

for install.

In addition, let’s get all the capnp rust libraries we are going to use for this

application. We are going to need to install not only the capnp crates but a few other

helper crates that we will use later. In Listing 5-19, we have the crates listed and their

uses.

Listing 5-19. Example of the crates needed for Cap’n Proto; this will be in the file

Cargo.toml

CANPNP

capnp = "0.9.4" ①

For the Derive for the Enumerations

enum-primitive-derive = "0.1.2" ②
num-traits = "0.2"

Canpn RC

capnp-rpc = "0.9.0" ③
tokio = "0.1.18"

futures = "0.1.25"

 ➀ This is the main capnp crate that will be used for all the message

building and manipulation.

 ➁ These two traits are used for our manipulation of enumeration

numbers to our standard rust structs.

 ➂ These are for the capnp RPC structs; we will make use of these later

in the chapter and are for communicating capnp messages via RPC.

Chapter 5 performanCe

https://capnproto.org/install.html

211

Define the Message

Now that you have the Cap installed, let’s start creating our health data message. We can

use the Health data JSON we created earlier as a starter to reflect the message we are

creating. In Listing 5-20, we have the JSON we created in the previous chapter.

Listing 5-20. Example of a simple health JSON

{

 "uuid": "9cf81814-1df0-49ca-9bac-0b32283eb29b",

 "timestamp": 1562453750553,

 "status": "Green",

 "msg": "Here we define what could be going on with our application and its

items.",

 "peripherals":[{ "name": "Camera" }, { "name": "Temp" }]

}

Here is one of the downsides of using JSON; by looking at it, we aren’t sure what all

those field types are or the size. For example, is the status an enumeration, a free forming

string, or something else? If the timestamp came in as nil, would it be a long, a string that

needs parsed, and so on? This is where proto binary messages and their structured data

really become powerful in a distributed microservice process. The parameters we have

are as follows:

• uuid – A UUID field which is a Text field

• timestamp – An unsigned int64

• status – An enum with allowed values Red, Green, Yellow

• peripherals – A list of Peripheral that has the field name on it

Let’s use the capnp messaging profile to create a message that contains all these

fields in Listing 5-21; this will look similar to the Google Protobuf you saw earlier but

with some differences.

Chapter 5 performanCe

212

Listing 5-21. The Message; this will be in the file schema/message.capnp

@0xca254782cfb5effd;

struct Health @0xdfdf80ca99cd265c { ①
 # Used as the struct to send out Package Updates

 uuid @0 :Text;

 timestamp @1 :UInt64;

 status @2 :Status; ②
 msg @3 :Text;

 userId @4 :Text;

 peripherals @5 :List(Peripheral); ③

 enum Status { ④
 green @0;

 red @1;

 yellow @2;

 }

 struct Peripheral { ⑤
 name @0: Text;

 }

}

 ➀ This starts the structure of our definition including an id.

 ➁ For our status, we are using a custom enumeration.

 ➂ Properties can also be lists of other structs.

 ➃ An enumeration definition of Status.

 ➄ The struct Peripheral which we referenced earlier as a list.

You will notice we have the enum and structs inside the struct itself. This is because

we aren’t using those structs outside of the struct at all. If we had planned to use the

structs outside of use in this one or in multiple structs, then you would have put the

inner struct outside the external struct. But for readability and brevity, I prefer this way.

Let’s circle back on that first line where you have those random digits after Health;

that is the Capnp id and is required to be somewhere in the schema. This ID is a 64-bit

id with the first 8 bytes being derived from the MD5 hash of the parent’s scope id. This

Chapter 5 performanCe

213

ID is used to help provide an easy way to remove ambiguity between schemas across

context. Normally, this is achieved in most languages with package or module structures.

Consider it similar to that but fancier. There is still a chance for collisions but rare. You

place the capnp id on the first line of the file and on the line for each structure/interface.

If you omit the ID, one will be assigned dynamically during the schema generation. How

do you create this id? You use the capnp tool we installed earlier; you can see this tool

being used in Listing 5-22.

Listing 5-22. Creating the capnp id on the command line

➜ capnp id

@0xfeb3c1c63721c118

Just copy and place it into your message at the appropriate areas.

Generating the Source Code

The message we created earlier was placed in schema/message.capnp; however, now we

need to take that schema and convert it to meaningful rust code that we can use. This

occurs via the Cap’n compiler; it will take a Protobuf message and generate source code

that reflects the message as well as adding necessary builders and readers. In Listing 5-x,

we added all the crates we needed to run the application, but we need add one more in a

section of the Cargo.toml that we haven’t used before, and that’s the build-dependencies.

The build-dependencies are used in conjunction with the build section of the package.

The build reference in the package is used to help in compilation of our application, and the

build-dependencies are any dependencies needed for to run whatever rust file is defined

in the build of the package. For our application, we are going to have cargo generate the

message code before it starts to compile the application using the message.capnp as a

reference. The builder can be created with boilerplate code that we have in Listing 5-23.

Listing 5-23. This will be the message builder; this will be in the file build.rs

fn main() {
 ::capnpc::CompilerCommand::new()
 .src_prefix("schema") ①
 .edition(capnpc::RustEdition::Rust2018) ②
 .file("schema/message.capnp") ③
 .run().expect("compiling schema");

}

Chapter 5 performanCe

214

 ➀ The prefix of the source location.

 ➁ The RustEdition, if not set, defaults to Rust2015 which would not

work for our application.

 ➂ The location of the message.capnp we created.

In order to compile the build.rs, we are going to require the capnpc (capnp

compiler) crate. This is defined in the Cargo.toml file in Listing 5-24.

Listing 5-24. This is the message builder; this will be in the file build.rs

[package]

name = "mqtt_service"

version = "0.1.0"

authors = ["Joseph Nusairat <joseph@nusairat.com>"]

edition = "2018"

build = "build.rs" ①

[features]

full = []

ch04 = []

[build-dependencies]

capnpc = "0.9.3" ②

 ➀ The location of the build.rs file we created earlier.

 ➁ The build dependency with the builder compiler crate.

Now run your cargo build and the message_capnp.rs will be created. The

location of the generated file will vary, but in general, you will find it in target/debug/

build/<project_name>/out/message_capnp.rs. Try to find the file and take a look at it;

a takeaway from it is it doesn’t actually generate a struct with properties but with readers

and writers instead which helps the speed of using Cap’n. The only set of code that may

look more familiar to you is the Status enum. I want to show that in Listing 5-25 since it

has some interesting traits.

Chapter 5 performanCe

215

Listing 5-25. The status enum that is generated; this will be in the generated

message_capnp.rs

 #[repr(u16)]

 #[derive(Clone, Copy, PartialEq)]

 pub enum Status {

 Green = 0,

 Red = 1,

 Yellow = 2,

 }

 impl ::capnp::traits::FromU16 for Status {

 #[inline]

 fn from_u16(value: u16) -> ::std::result::Result<Status,

::capnp::NotInSchema> {

 match value {

 0 => ::std::result::Result::Ok(Status::Green),

 1 => ::std::result::Result::Ok(Status::Red),

 2 => ::std::result::Result::Ok(Status::Yellow),

 n => ::std::result::Result::Err(::capnp::NotInSchema(n)),

 }

 }

 }

What you will notice is that the source automatically generates a sequence id for

each status and provides a trait for creating the Status from the int. This makes it easier

to have a reference to the status outside of the application without importing and

working directly on it. We can interact with just a number. Also realize much like our

properties the Statuses are additive; it will be easy to add, but to subtract is not backward

compatible.

Referencing the Source Code

One final item, we need to reference this generated source code in our application in

order to actually use it in our application. We are going to create a module that wraps all

the source code that we created. I’ve put this in the main.rs file of each of our services.

In Listing 5-26, we have the reference for the message_capnp.rs file that is created by the

build.rs in the out directory of our project.

Chapter 5 performanCe

216

Listing 5-26. This will be the module that wraps the generated source; this will

be in the file src/main.rs

pub mod message_capnp {

 include!(concat!(env!("OUT_DIR"), "/message_capnp.rs"));

}

The code and the messaging creation we created earlier will be used in each of the

three services we need, so assume adding that block of code to the main.rs for each

service.

Creating the Client

Let’s start with creating the client; when the client code is run, it will set up an MQTT

client, then create a generic health data object, and finally publish it to our queue. When

building the message, the generated code is not creating structs, but using a builder

pattern instead. The builder pattern allows us the Cap’n Proto libraries to be more tightly

coupled with the objects we create and able to store them the way it wants to for optimal

serialization and deserialization. We are building this client code here to go over and for

testing purposes. However, the code itself will live in the rasp-pi-mq application since it

will be run directly from the Raspberry Pi.

Let’s go over the steps we need to build our message:

 1. Create a mutable builder message object; this will be the same

across all Cap’n Proto messages we create.

 2. Using the message, initialize a mutable Health object based on

the health::Builder so that we can start adding fields to the

health data. Remember, using the builder pattern helps us avoid

some of the serialization cost.

 3. Set all the fields that you want to set on the Health message. The

Peripherals will be built via their own type of builder.

 4. Finally, convert this message to a byte array to send to the MQ.

In Listing 5-27, we use the preceding steps to create the Vec<u8> message; you will

notice all the variables are passed in to be set; the full code is in the examples attached

with the book.

Chapter 5 performanCe

217

Listing 5-27. The client builder for the message queue; this will be in the file

rasp-pi-mq/src/mqtt/client.rs

fn build(status: u16, msg: &str, peripherals: Vec<&str>, uuid: &Uuid,

time_in_sec: Duration) -> Vec<u8> {

 use crate::message_capnp::health; ①
 use crate::message_capnp::health::Status;

 use capnp::serialize_packed;

 use capnp::traits::FromU16; ②

 let mut message = ::capnp::message::Builder::new_default(); ③
 {

 // Use a Scope to limit lifetime of the borrow.

 let mut health = message.init_root::<health::Builder>(); ④
 // Get the user id (TODO hard-code for now)

 health.set_user_id("JOSEPH1234");

 // Give it a unique ID

 health.set_uuid(uuid.to_string().as_ref());

 health.set_timestamp(time_in_sec.as_secs());

 // This could error if the result isn’t 1-3, should validate or wrap

 health.set_status(Status::from_u16(status).unwrap()); ⑤
 health.set_msg(msg);

 // needs to occur after or you will get "value borrowed here after

move" for the other setters

 let mut health_peripherals = health.init_peripherals(peripherals.

len() as u32); ⑥
 {

 for i in 0..peripherals.len() {

 health_peripherals.reborrow().get(i as u32).set_

name(peripherals[i]); ⑦
 }

 }

 }

Chapter 5 performanCe

218

 // write the message to stdout

 let mut buffer = Vec::new();

 serialize_packed::write_message(&mut buffer, &message).unwrap(); ⑧

 debug!("Payload {:?} ", String::from_utf8(buffer.clone()));

 buffer

}

 ➀ The crate imports for the capnp health data derived from the module

we set up in the previous section.

 ➁ This import is to add the FromU16 trait that creates a status from an id.

 ➂ Creates our default builder.

 ➃ Initializes the builder for our health data object.

 ➄ Uses the from_u16 trait to convert our integer to a status.

 ➅ Initializes the peripherals list with the size of the array we passed

through.

 ➆ Iterates through the list of items we pass in, setting each on the way.

 ➇ Serializes the message we created to a byte array, packing it.

The reborrow() you see earlier is necessary because after creating the health_

peripherals we want to use this again. There can be a bit of a trick in the ordering of

items to avoid borrow errors. For example, if you tried to do the init_peripherals and

setting of them before you set the properties on the object, you would get a borrow of

moved value; there are ways to resolve that in Rust by controlling the lifetime of the

variable. Also, note on point #8 we used the serialize_packed; there is also serialize;

I choose packed because I want to minimize the size of the byte array going over the

Internet since AWS, GCP, and so on are going to charge us by the amount of data

transferred, and in any mobile apps, you greatly want to minimize potential cost.

Publishing the Message

We have gone over publishing messages before, but before we were passing JSON

around, now we are going to publish a byte array instead. And while the code is basically

the same, it’s good to review it once more in Listing 5-28.

Chapter 5 performanCe

219

Listing 5-28. The client builder for the message queue; this will be in the file

rasp-pi-mq/src/mqtt/processor.rs

pub fn publish_bytes(client: &mut MqttClient, topic: &str, payload:

Vec<u8>, qos: QoS) {

 info!("Publish to the topic : {:?} / {:?}", topic, qos);

 client.publish(topic, qos, false, payload).unwrap();

}

I wanted to preserve the other endpoint so this endpoint sends to /health/byte.

I keep mentioning the size of the packages we are sending over, and to save not only

time to send but also cost to you the IoT creator in terms of cloud usage cost. While I can’t

get into a total cost by cloud provider since it varies from company to company, we can look

at a comparison of the size for the messages. The examples of message we had earlier I sent

through MQTT are JSON, Cap’n Proto, and Cap’n Proto compressed. Here are the results:

• JSON – 223 bytes (when we minimize the JSON)

• Cap’n Proto – 216 bytes

• Cap’n Proto compressed – 159 bytes

The JSON vs. the compressed Protobuf is a 29% savings in size; that is quite a bit of

savings when spread over thousands and millions of messages. And in fact, there is more

compression you could add if you wanted to achieve even smaller messages; Cap’n Proto

recommends using further compression. We won’t do it for this book, but it’s easy to look

up gzip, zstd, and so on compression.

Message Queue Layer

In our MQTT layer, it is going to change drastically. Instead of getting a JSON message

and sending via HTTP to the retrieval_svc, we will be receiving a Cap’n Proto message

and sending it via RPC to the retrieval_svc. Logically, this is fairly straightforward

but programmatically very different. The monitor_notifications will remain mostly

unchanged. Before it received a Vec<u8> and converted it to a string; now we will just

pass the Vec<u8> directly to our processing method. Once in there, we will create our

health message from the byte array and then the health::Reader to the RPC server for

processing. This first part is fairly straightforward; in Listing 5-29, we take the Vec<u8>

and convert to a health::Reader that we can then send to the RPC.

Chapter 5 performanCe

220

Listing 5-29. The deserializing of the packaged message; this will be in the file

src/rpc.rs

 pub fn run_health(host: &str, port: u16, buffer: Vec<u8>) -> Result<(),

::capnp::Error> {

 use capnp::serialize::OwnedSegments;

 let deserialized: capnp::message::Reader<OwnedSegments> =

capnp::serialize_packed::read_message(①
 &mut buffer.as_slice(),

 capnp::message::ReaderOptions::new()

).unwrap();

 let health = deserialized.get_root::<health::Reader>(); ②

 run(host, port, health.unwrap()) ③
}

 ➀ Remember, we used the serialize_packed before to create the array

so we have to use the same to read that array.

 ➁ Now that we have the unpacked message, we can get the

health::Reader off of it.

 ➂ The RPC calls that we will be creating in a bit.

Now that it is in the Reader, you could in theory create a struct and save it to the

database or do processing on the object directly depending on what the message request

is for. For us, we are forwarding it to another microservice.

Creating the RPC Interface

Creating the reader from the MQ was half the battle; the second is sending it over

the RPC. Remember, when we discussed before about the RPC, it a "time travelling"

RPC. This works by using the future and promise model. The promise and future model

is actually an older concept originally created in 1976 by Daniel Friedman and David

Wise who wanted to devise a system to get immediate response of a request. The future

is defined as a read-only placeholder where you will know what value is being returned.

The promise is the "promise" that it will set the future variable to be read. The value

in this is the future doesn’t necessarily have to care who sets its promise but that the

Chapter 5 performanCe

221

promise will be fulfilled. In our case, this results in the request being sent, but allows for

immediate continued processing while waiting for that future to complete. We will be

making use of promises and futures to deliver the RPC interface.

But to start, let’s talk about this RPC interface; we need to define a function we are

sending and the attributes of that function. In order to do that, both the client and the

server have to agree on this interface definition, so because of that, we are circling back

to the message.capnp. In here, we will add an interface which allows us to make the RPC

calls. We will be then defining a function to send our health update. And finally, another

interface to read the returned value, since this is all being done with promises and

futures.2 You can also add security in the RPC to make sure that the recipient has access

to the addressed object; we won’t be doing that for our examples though. We are going to

go over the code for the interface in Listing 5-30.

Listing 5-30. The deserializing of the packaged message; this will be in the file

schema/message.capnp

interface ProcessUpdate @0xeb03883f58bd9352 { ①

 # Interface to update the items

 call @0 (update :Health) -> (passed :Value); ②

 interface Value { ③
 read @0 () -> (value :Bool); ④
 }

}

 ➀ Defining our outer ProcessUpdate interface that will contain our

function to send the Health message.

 ➁ The method call we will be using to send the Health object,

returning a Value interface to be read in the future.

 ➂ The Value interface; we kept this as an inner interface since it is only

used by the call. This wraps the value in an RPC object.

 ➃ The solo read method returning the boolean value that it was added

successfully.

2 https://capnproto.org/language.html#interfaces

Chapter 5 performanCe

https://capnproto.org/language.html#interfaces

222

Using the interface as a return for the value is for performance and keeping with the

promise/future model; it allows the value to be used in subsequent evaluate requests

without waiting for the client to finish its evaluation. This code also will generate

corresponding source code and put into the message_capnp.rs like the message was.

Creating the RPC Client

Now it’s time to create the RPC client. This will also make use of the tokio crate for our

asynchronous runtime processing. It should be noted here that the Cap’n Proto for Rust

only implements Level 1; thus, our examples are only going to be for Level 1.

The basics of what we are doing are pretty simple. Create a socket connection to our

RPC server to stream the data. Once that is set up, we can create a network between the

client and the server reader to communicate between each other. From there, the RPC will

make a request to the call method on our server, sending the health data, all while we wait

for the promise back returning the boolean whether it was successful or not. The steps are

a bit complicated, but I’ve tried to parse the explanations down the best I can. So read the

code in Listing 5-31 and then read all the bullets for explanation of what the code is doing.

Listing 5-31. The sending of the message to our server; this will be in the file

src/rpc.rs

 fn run(host: &str, port: u16, health: health::Reader) -> Result<(),

::capnp::Error> {

 // Set up the socket

 use std::net::ToSocketAddrs;

 // Create a socket address

 let socket_address = format!("{}:{}", host, port); ①
 info!(" Start Run Client: {}", socket_address);

 let socket_addr = socket_address.to_socket_addrs().unwrap().next().

expect("could not parse address");

 // this is the executor

 // runtime calls the poll on the future until its value is returned

 let mut runtime = ::tokio::runtime::current_thread::Runtime::new().

unwrap(); ②
 // is a nonblocking connect call

Chapter 5 performanCe

223

 let stream = runtime.block_on(::tokio::net::TcpStream::connect(&soc

ket_addr)).unwrap(); ③

 stream.set_nodelay(true)?;

 let (reader, writer) = stream.split();

 let network =

 Box::new(twoparty::VatNetwork::new(reader, std::io::BufWriter::

new(writer), rpc_twoparty_capnp::Side::Client,

 Default::default())); ④

 let mut rpc_system = RpcSystem::new(network, None); ⑤
 let process_update: process_update::Client = rpc_system.

bootstrap(rpc_twoparty_capnp::Side::Server); ⑥

 // This is just to capture any errors we may have gotten and

acknowledge them.

 // spwans the variious tasks?

 runtime.spawn(rpc_system.map_err(|_e| ()));

 {

 // Call was dderived from us using the word call in our

interface adding _request

 let mut request = process_update.call_request(); ⑦

 let mut builder = request.get().set_update(health); ⑧

 let value = request.send().pipeline.get_passed(); ⑨
 let request = value.read_request(); ➉
 runtime.block_on(request.send().promise.and_then(|response| { ⑪

 info!("Response :: {}", pry!(response.get()).get_value()); ⑫

 Promise::ok(())

 }))?;

 info!("Request sent ...");

 }

 Ok(())

 }

Chapter 5 performanCe

224

 ➀ Creates the socket address; this will be the same address we use on

the server.

 ➁ Creates the mutable reactor that is backed by the operating system’s

event queue. The runtime is critical in giving us an ability to poll

futures and streams and knowing when they will be completed and

responding to the system. Using a poll allows us to continue running

the thread without blocking.

 ➂ Sets up our socket stream to the RPC server. We block here because if

we can’t connect to the server there isn’t much else to do.

 ➃ Vats are what Cap’n Proto refers to as nodes. This sets up a

connection between our client and the server. Since this code is

serving as the client, the input is the reader stream and output is the

writer stream. Also notice we are using Box::new which will allocate

memory for this on the heap.

 ➄ This is the Cap’n Proto RPC implementation of the VatNetwork we

just created earlier. This is rather simplistic right now because we

are using Level 1 RPC. When Level 3 gets implemented, this will get

increasingly more complex.

 ➅ The process_update::Client refers to the name of the interface we

created, ProcessUpdate; this bootstraps and sets the client to talk

to the server. We have to define the type here because the compiler

won’t be able to infer the type without it.

 ➆ This sets up a reference to the call method we created earlier; the

format this gets generated in is <method>_request.

 ➇ This sets the parameter on request; since we named the parameter

update in the message, this becomes set_update and takes as a

variable the health::Reader that was passed in to the function.

 ⑨ Finally, we send the request and in the pipeline get the return value

which is named passed, hence the get_passed as the method. This

returns us the interface we created of Value.

Chapter 5 performanCe

225

 ➉ In order to get the value off the interface method read, we use the

same format for calling that we performed in bullet 7, and that was to

use <method>_request which will be read_request.

⑪ In this line, we send the request for the value of the return;

however, in order to get the value, we have to wait for the server to

send us a value back. Hence, in this we will block_on to wait for

the promise back.

⑫ Since this is a promise, we can’t evaluate the response

immediately. Here we make use of pry!, which is like a try but for

promises. This wraps returning our value in get_value().

This completes setting up the client; we can actually perform a small test now if you

are on a Unix machine and have netcat installed (it comes with most Unix boxes). If you

do, go ahead and run netcat on the same server and port we are using for the RPC. Then

run the mqtt_service, and use the health service to send a message to the MQ. If

everything is set up correctly, you should see the byte array appear like in Listing 5-32;

this will be mostly unformed logic of course.

Listing 5-32. Monitoring traffic on localhost port 5555

➜ nc -l 127.0.0.1 5555

 R=689d4721- 251e- 4199-ade3-517b227b902aHere we define what could be going

on with our application and its items: *CameraTemp

Retrieval Service Layer

Now that the client is set up, let’s finish this piece by setting up the server to receive the

data and then to process and store it in our database. While we are going to keep this

code on our retrieval_svc, we are going to want to actually run the RPC and the HTTP

server as separate services with a command-line flag to differentiate which one we are

running. You can check out the main in the example app to see how we did this. For our

server, there are going to be about three steps we need to make this all work:

Chapter 5 performanCe

226

 1. Create a server for each of the interfaces we created in the

message.capnp. That means you will need a server for the

ProcessUpdate and another for the Value.

 2. Create a function to take the data we received on the

health::Reader and store it to the database.

 3. Set up the RPC listener on the same port that the client is on.

Creating the RPC Server

Before we set up our listeners and threading, we need to create the implementations of

the Cap’n Proto interfaces we defined in the message.capnp. Since we do not have the

concept of interfaces in Rust, these are created by the code generators as traits. Thus,

for each method on your interface, you will have a struct that you can name whatever

you want, but then you will have to create an implementation of the generated trait that

contains a method signature similar to what was defined in our message.capnp. These

methods take in three parameters:

 1. Self – This is self-explanatory; it contains the properties of that

interface.

 2. Parameters – The parameters that are passed into the method.

 3. Result – The result is the result value we are setting for the return.

This of course is mutable since we need to alter it in order to set

the results.

You may think logically why is that we are setting the results as opposed to just

returning the results like most methods. This is because we are using promise/futures,

and what we are actually returning is a Promise instead. In addition, the parameters are

not generic but specific and name based on the parameters we created.

Evaluate the Method

To be clear, the end result of everything we are doing is to take the health::Reader we

created way back in the health client application and store that data into the database.

In Listing 5-33, we make that call to the database converting the health::Reader into a

HealthData model that reflects the database model we created earlier.

Chapter 5 performanCe

227

Listing 5-33. Will evaluate the health data and send to our diesel app to save the

data; this will be in the file src/rpc.rs

use capnp::primitive_list;

fn persist(health_reader: health::Reader,

 conn: PgPooled,

 params: Option<primitive_list::Reader<f64>>)

 -> Promise<i32, Error>

{

 use crate::models::health_check::{HealthData,Peripheral};

 use capnp::traits::ToU16;

 let peripherals: Vec<Peripheral> = health_reader.get_peripherals().

unwrap().iter().map(|p| Peripheral {name: p.get_name().unwrap().to_

string()}).collect();

 let data = HealthData::new(health_reader.get_uuid().unwrap(),

 health_reader.get_user_id().unwrap(),

 health_reader.get_timestamp(),

 health_reader.get_status().unwrap().to_u16(),

 health_reader.get_msg().unwrap(),

 peripherals);

 let id = data.save(&conn);

 Promise::ok(id)

}

Implementing the Value Interface

The first interface we are creating is the simplest one; that is the ValueImpl; this interface

is simpler because it does not take any parameters and responds with a boolean as

opposed to struct. Responding with a primitive type is easier than responding with an

object that requires a reader. We are also going to set a boolean on the struct we are

creating; this way, we can have the call method set that boolean for us to make it easier

to know the result to return. In Listing 5-34, we create our ValueImpl for our read @0 ()

→ (value :Bool); method.

Chapter 5 performanCe

228

Listing 5-34. Server implementation for value interface to be returned; this will

be in the file src/rpc.rs

struct ValueImpl { ①
value: bool

}

impl ValueImpl {

 fn new(value: bool) -> ValueImpl {

 ValueImpl { value: value }

 } ②
}

impl process_update::value::Server for ValueImpl {

 fn read(&mut self,

 _params: process_update::value::ReadParams, ③
 mut results: process_update::value::ReadResults) ④
 -> Promise<(), Error>

 {

 debug!("Read the Result");

 results.get().set_value(self.value); ⑤
 Promise::ok(())

 }

}

 ➀ Create the struct with a boolean as a property.

 ➁ Create a helper function to make the code cleaner when we create

the ValueImpl later.

 ➂ Bring in the parameters, which we have none of.

 ➃ A mutable result list of ReadResults, which name is derived from the

method capitalization + Results.

 ➄ Set the value on the results; the set_value is derived from the

parameter being named value.

This gives us the implementation for the Value returned to the RPC client; now let’s

set up the ProcessUpdate::call method which will as part of its functionality call out to

the ValueImpl.

Chapter 5 performanCe

229

Implementing the ProcessUpdate Interface

The ProcessUpdate interface, if you recall, had one method call @0 (update :Health)

→ (passed :Value);. Let’s look at how this gets translated into an implementation in

Listing 5-35.

Listing 5-35. Server implementation for process_update interface; this will be in

the file src/rpc.rs

struct ProcessUpdateImpl { ①
database_pool: PgPool

}

impl ProcessUpdateImpl {

 fn new(db: &str) -> ProcessUpdateImpl {

 ProcessUpdateImpl {

 database_pool: ProcessUpdateImpl::establish_connection_pool(db)

 }

 }

 fn get_db(&self) -> PgPooled {

 self.database_pool.clone().get().unwrap()

 }

 fn establish_connection_pool(database_url: &str) -> PgPool {

 use crate::errors::ResultExt;

 use crate::errors::DbResult;

 let manager = ConnectionManager::<PgConnection>::new(database_url);

 // Get the pooled connection manager

 // unrecoverable fail

 Pool::new(manager).expect("Failed creating connection pool")

 }

}

Chapter 5 performanCe

230

impl process_update::Server for ProcessUpdateImpl { ②
fn call(&mut self, ③
 params: process_update::CallParams, ④
 mut results: process_update::CallResults) ⑤
 -> Promise<(), Error> {

 info!("** received a request for process update");

 let eval = persist(pry!(pry!(params.get()).get_update()),

 self.get_db(), None); ⑥

 Promise::from_future(async move {

 let passed = { if eval.await? >= 0 {true} else {false}};

 info!("Evaluate future ... {}", passed);

 results.get().set_passed(

 value::ToClient::new(ValueImpl::new(passed)).into_

client::<::capnp_rpc::Server>()); ⑦
 Ok(())

 })

}

}

 ➀ Creates our struct; we will use this later in the RPCSystem to set as

the Server for outside connections.

 ➁ Implements the source code generated trait

process_update::Server.

 ➂ The call method that matches the signature of the parameter we

defined in the message.

 ➃ The CallParams is the name of the method capitalized with Params

added.

 ➄ Similarly, the CallResults is the name of the method with Results

as a suffix.

Chapter 5 performanCe

231

 ➅ We return a promise so this starts the promise we are returning to

the caller. In here, we call out to an evaluate method. This evaluate

method performs all the work.

 ➆ Uses the ValueImpl we created before to set the boolean passed.

We evaluate the boolean if there is a non-0 number (meaning the

database row was crated), we return true.

On bullet 6, we called a persist method; this method will be where we perform

the functionality of using the reader and are saving it to the database. We are going to

go about this the easy way and convert the reader to a struct and then serialize that to

JSON and store the complete JSON in the database, returning the id that is generated. In

Listing 5-36, we save our HealthData to the database.

Listing 5-36. Saves the health reader to the database; this will be in the file

src/rpc.rs

use capnp::primitive_list;

fn persist(health_reader: health::Reader,

 conn: PgPooled,

 params: Option<primitive_list::Reader<f64>>)

 -> Promise<i32, Error>

{

 use crate::models::health_check::{HealthData,Peripheral};

 use capnp::traits::ToU16;

 let peripherals: Vec<Peripheral> = health_reader.get_peripherals().

unwrap().iter().map(|p| Peripheral {name: p.get_name().unwrap().to_

string()}).collect(); ①

 let data = HealthData::new(health_reader.get_uuid().unwrap(),

 health_reader.get_user_id().unwrap(),

 health_reader.get_timestamp(),

 health_reader.get_status().unwrap().to_

u16(), health_reader.get_msg().

 unwrap(), peripherals);

Chapter 5 performanCe

232

 let id = data.save(&conn); ②

 Promise::ok(id) ③
}

 ➀ Convert the peripherals into a Vec<Peripheral>.

 ➁ Create a HealthData struct.

 ➂ Persist the JSON conversion of the struct to the database.

Implementing the RPC Server

The final step is to create the RPC server itself; this will look a bit like the client since we

are using the same libraries to establish the connections; one of the big differences is we

are using a tcp listener as opposed to a tcp stream for our socket connection. In addition,

we will be referring to this system as the server for our VatNetwork as well. Let’s look at

Listing 5-37 for the RPC server.

Listing 5-37. The receiving of the server; this will be in the file src/rpc.rs

 pub fn start(host: &str, port: u16, database: &str) -> Result<(),

::capnp::Error> {

 use std::net::ToSocketAddrs;

 info!("Start RPC Server : {}:{}", host, port);

 let socket_address = format!("{}:{}", host, port);

 let socket_addr = socket_address.to_socket_addrs().unwrap().next().

expect("could not parse address");

 // spawns a local pool

 let mut exec = futures::executor::LocalPool::new();

 let spawner = exec.spawner();

 let result: Result<(), Box<dyn std::error::Error>> = exec.run_

until(async move {

 // Set up the socket

Chapter 5 performanCe

233

 let listener = async_std::net::TcpListener::bind(&socket_

addr).await?; ①

 // Set the server that we implemented

 let pu =

 process_update::ToClient::new(ProcessUpdateImpl::new(databa

se)).into_client::<::capnp_rpc::Server>(); ②

 // listen on the incoming socket

 let mut incoming = listener.incoming();

 while let Some(socket) = incoming.next().await { ③
 // unwrap it

 let socket = socket?;

 socket.set_nodelay(true)?;

 let (reader, writer) = socket.split();

 let network =

 twoparty::VatNetwork::new(reader, writer,

 rpc_twoparty_capnp::Side::Server,

Default::default()); ④

 let rpc_system = RpcSystem::new(Box::new(network),

Some(pu.clone().client)); ⑤

 // Spawns the local object

 spawner.spawn_local_obj(Box::pin(rpc_system.map_err(|e| warn!

 ("error: {:?}", e)).map(|_|())).into()).expect("spawn")

 }

 Ok(())

 });

 info!(" Done with Run Server");

 result.expect("rpc");

 Ok(())

}

Chapter 5 performanCe

234

 ➀ Binds our socket and listens for a connection.

 ➁ Creates the ProcessUpdate server; this uses a ProcessUpdateImpl

that we created previously.

 ➂ Listens on the socket for an incoming connection and processes the

inner code when received.

 ➃ Creates our VatNetwork similar to the one we created previously, but

noticeably different is the side we are on is the Side::Server side.

 ➄ This is where we create the heap memory for a new RPC on the

network with the ProcessUpdate bootstrap.

You now have all the pieces complete to run this microservice application with the

client. In order to run this, just do these:

• Start up the MQTT service.

• Start up the retrieval RPC service.

• Run the client health app.

And watch all the screens; you can then check your database in the end for the

persisted JSON.

The goal of this chapter was to introduce you to two performance techniques

common with IoT applications. You can see the amount of extra plumbing that goes with

them, but in the end, they can help with throughput and fix bottlenecks. It’s sometimes

good not to over-optimize before you need to, but often you can see where bottlenecks

are going to happen. When we worked on OTA for our cars, we could tell right away the

status messages for it were numbering in the thousands for one car, and these messages

would come back in a relatively short period of time. And this was for one car, so it was

easy to see where a bottleneck was going to occur. I hope this helps in developing your

own IoT stack.

 Summary
In this chapter, we discussed optimizing our existing application in the sake of

performance. We didn’t add any functionality but just altered how to do existing

functionality. This chapter was important to me because both topics while they have

been around for a bit have gained more recent popularity. CQRS and especially eventual

Chapter 5 performanCe

235

consistency in conjunction are good ways of handling applications of scale. They

assist in allowing users to not hang on long connection timeouts while allowing the

application to still process all the needed data. Serialized messaging over RPC (Cap’n

Proto) has become increasingly popular not just as a communication between backend

components but also between JavaScript web layers and the backend. I currently use

Protobufs on other applications to talk between a Vue.js application and a backend

server. And at the very least, it will educate you to know what these tools are, whether

you use them in the future or not.

Chapter 5 performanCe

237
© Joseph Faisal Nusairat 2020
J. F. Nusairat, Rust for the IoT, https://doi.org/10.1007/978-1-4842-5860-6_6

CHAPTER 6

Security
If we deployed our site the way it’s currently designed, it would not be a very secure site;

in fact, right now anyone could access our message queues and add data to them or hit

all of our endpoints in the microservice. This could somewhat work if you were running

on a home network (although still vulnerable to any one who gets on your network).

In fact, we don’t even have users; this obviously would not make a great application to

use in a multi-customer environment. Even as a home project, we’d be locked into one

person.

Regardless, we’d be remiss if we didn’t discuss how to secure our application. There

are many tools and methodologies to secure a modern website. For this book, I am going

to focus on just two of them for our application:

• REST/GraphQL layer

• MQTT layer

The first layer is our endpoints exposed on the microservice to be used by

either internal applications talking to each other or external entities wanting to gain

information from that layer. We will be making use of the REST and GraphQL endpoints

created so far. For those endpoints, we are going to add authentication checking since

all of our endpoints (except health) require an authenticated user via OAuth 2, which

is fairly standard for any site. For the message queues, we will use SSL certs to secure

the communication between the endpoints. These will be a set of X509 certs that makes

sure the traffic is not only encrypted but secured by the endpoints. Don’t worry if some

of those terms are confusing; we will get into what everything means and how to glue it

together in a bit.

https://doi.org/10.1007/978-1-4842-5860-6_6#DOI

238

 What We Aren’t Covering
To make a truly secure site, there are many other items you want to add to your site.

Security is its own department at most large companies, and they even conduct formal

architecture reviews of applications to make sure they are secure. If you actually consider

the data we will be storing (personal video data), security is VERY important because

you wouldn’t want to have yours or customer videos exposed to the Web. We won’t be

able to get into all the techniques used for an application. However, one of the biggest

pieces of software large and small companies make use of is monitoring software.

Monitoring software can help you determine denial-of-service attacks and other attempts

to penetrate your network. In addition, they are good for triage later after an attack to

determine what vulnerabilities they were attempting to exploit and what they couldn’t.

There are many paid and open source solutions for this that you can explore on your own.

One of our biggest hits is our communication between the microservices will not be

over TLS; it will be over plain HTTP. This is far from ideal, but I didn’t want to set up TLS

communication between the endpoints in the book. In a bigger environment, this is where

I’d often recommend a service mesh like Istio that can help control the flow of traffic to

the services and between services in a secure manner. With tools like Istio, mutual TLS

becomes automatic and is just another way to make sure your endpoint traffic is secure.

 Goals
Alas, we won’t be covering either of those, but what we will cover will be these:

 1. Setting up and configuring an account with Auth0 to be used for

security

 2. Setting up logged in communication between a user and our

services

 3. Creating authenticated connections between microservices

 4. Learning how to use certificates for MQTT

 5. Creating self-signed certificates

 6. Starting up the eMQTT with self-signed certificates

 7. Using self-signed certificates between client and MQTT

Chapter 6 SeCurity

239

 Authenticate Endpoints
In this section, we are going to go through how to secure the endpoints in our

microservices with authentication. This will allow us to prevent users or hackers from

using application to read/write without authentication. In addition, this will allow us

when creating media data and querying the data to know the user. For our application,

we are going to use tried and true technologies to create this; we will use an Open

Authorization 2.0 (OAuth 2) authorization with Auth0 providing the login portal tools.

First, let’s talk a little about how we got here to use OAuth 2 and Auth0.

In the first 10–15 years of the World Wide Web’s mainstream existence, most

applications were web based, and even more often those web applications were

intrinsically tied to its backend servers, which had content generating the HTML itself

for the application. Everything was highly coupled. We used our own databases; on

our own servers, we’d create everything from scratch. This isn’t much different from

days of the first computers when each manufacturer had their own languages for their

own computers. Everything that was on the site was generally coded uniquely for the

site. And even when we used frameworks, the storing of data was still centralized to the

application. However, this model of all under one roof started to change, especially when

it came to authentication.

As the use of the Internet evolved, we started to have more complex website and

even mobile sites. As the Web evolved instead of creating one application that has the

web code and backend code, we started to segregate out those units into their own

more stand-alone parts. With the addition of mobile, this became another stand-alone

application. Each of these applications still spoke to the same backend but no longer

were you generating HTML from that backend. And even within the backends, they

had to communicate to other servers with knowledge of the user. All of those lead us to

creating a standard OAuth to allow authentication and authorization across different

systems.

On the actual code for authentication, it’s hard to perform securely so that no one

hacks it, and by its nature, it’s fairly generic. The login across lines of business is relatively

the same. You have a login and password, as well as the ability to recover a forgotten

password. I’ve implemented this myself many times, and it’s relatively repetitive. But

doing it yourself, you have to constantly worry about security; what if someone were to

hack your site? You would expose tons of customer emails, at which point you have to

disclose embarrassingly that their info was disclosed. However, if you do not manage it

on your own, you lower the risk to storing any personal identifiable data; all they have

Chapter 6 SeCurity

240

is UUIDs they can’t correlate; there is less of an embarrassment or risk. This leads to

companies specializing in OAuth services with low subscription costs, and it just made

more sense to spending money for it than spending time.

 Authorization vs. Authentication
These two concepts go hand in hand, and we will use them throughout this section to

discuss how we are going to work with securing the endpoint for a given user. However,

I think it’s important not to conflate the terms and use them to understand what each is.

Lets define what Authentication (AuthN) and Authorization (AuthZ) means.

Authorization

Authorization is your system that decides whether you should have access to a particular

set of resources to perform tasks. This can decide whether a subject (in our case,

usually the user) can access a particular endpoint and what they do. It is even used

to determine whether two microservices can talk to each other; this helps securing

your microservices. Authorization determines what permissions a particular subject is

allowed. Most often, the system that one uses for authorization is OAuth 2.

Authentication

Authentication is the process of identifying the subject, most often a user, defining who

that subject is and associating a unique identifier to them. This id will then be used to

store in your databases and used as a reference when calling the application. This can

be your Lightweight Directory Access Protocol (LDAP) system, your Azure AD, or even

some homegrown system. Most often, the system that wraps around that interops with

OAuth 2; the best implementation of such is OpenID Connect.

 OAuth 2
The OAuth framework has been around since about 2006, and the OAuth 2 spec came

shortly thereafter and has been in use ever since without any major changes. OAuth has

become the industry standard for authorization and is developed as part of the OAuth 2

Authorization Framework.1

1 https://tools.ietf.org/html/rfc6749

Chapter 6 SeCurity

https://tools.ietf.org/html/rfc6749

241

OAuth 2 allows applications to grant access to services and resources by using an

intermediary service to authorize requests and grant user access. This allows you to

enable resource access without giving unencrypted client credentials. Users can use a

JSON Web Token (JWT) or an opaque token for an authorization server that can then

be used to access various resources. These tokens can then be passed to various other

services with an expiration date as long as the token is not expired. The client that is

doing the requesting doesn’t even have to be aware at each call what resource the token

belongs to.

 OpenID Connect

Open Id is the authentication layer that easily sits on top of OAuth 2.2 Open ID allows

you to do authentication returning JWTs that are easily usable in the OAuth 2 world.

These JWTs contain claims that tell you additional information about the user. Standard

properties to include are name, gender, birth date, and so on. JWTs can also be signed. If

they are and you have the keys to confirm the signature, you can generally trust that data;

if not, you can use the JWT to query an endpoint for this information instead.

 Applying AuthZ and AuthN
Authentication is pretty standard for most applications, and you’ve probably never

built an application without it even if you didn’t set it up yourself. The difference for

this application might be how you are authorizing. In most applications you work with,

we have a standard web portal or even a forwarded portal via your mobile application.

These allow for authentication of the user through a standard username and password.

And this works well on your iPhone or desktop because you have a full-size keyboard at

all times. However, on most IoT devices, even with a touch screen, we won’t always want

to make them type the username and password authentication out all the time. It can be

time-consuming and error-prone causing a poor user experience.

There is another way of course, and you’ve probably used it before even if you

weren’t aware of it at the time, the device authentication flow. With the device flow

instead of using the device to log in directly, you will use a website. What happens is the

device will prompt us to log in; it will then supply a URL and device code. We will then

go to the website and log in using the device code when prompted. In the meantime, our

2 https://openid.net/specs/openid-connect-core-1_0.html

Chapter 6 SeCurity

https://openid.net/specs/openid-connect-core-1_0.html

242

application will ping the authorization server to see if the user has been authenticated.

Once the user is authenticated, the system will get a response that the user is authorized

that will include an access token and optionally user token. At that point, the device will

consider itself authenticated and will continue performing whatever actions it needs to

to get the rest of the data.

In Figure 6-1, we have an authorization flow that shows how we can use

authentication services to request data.

Figure 6-1. Authorization flow with device

Chapter 6 SeCurity

243

 Auth0

When using OAuth 2 with OpenID Connect, there are multitude ways to put this all

together. A common approach is to create your own Authorization system but rely on

an OpenID Connect to run the authentication flow. This is common when you go to a

website and you are asked to log in and you see the redirects for Google, Facebook, and

so on. One of the main reasons people use this approach is security and safety. People

may not trust adding their username and password to your site, but they trust another.

In addition, it makes it, so you don’t have to remember the username and password for

each site you use. Also it takes away the onus on you having their user data. If your site

gets compromised, it’s best to have less personally identifiable data than more. However,

many people still like to maintain control of their authorization needs, the OAuth 2

portion; part of the reason is because of how many frameworks are out there to easily

interoperability with them.

For our application, we are going to use a provider that can handle both aspects for

us, Auth0. And for our testing needs, Auth0 will be free for us to use; even in smaller

limited quantities, it is still free. Auth0 allows us to choose using either the Google

authentication model or its own personal database. If you want more information on the

OpenID Connect system, you can go here: https://auth0.com/docs/protocols/oidc.

For our system, we are going to use Auth0’s ability to use a built-in database (this

cuts back on a few extra steps we’d have to take with setting up a flow with Google).

Great thing about this is we could even use an existing database in our system for

importing into Auth0 if we needed to. Our examples going forward will use the Auth0

authentication/authorization endpoints to run our user management and security

checkpoints. However, most of the code we are writing could work in any system; you

may just have to adjust the parameters since those can differ between providers, but the

general flow is the same.

Setting Up Auth0

Let’s start with walking through setting up Auth0; it’s a fairly straightforward process but

always good to be on the same page. Head to https://auth0.com/ and click Sign Up. In

Figure 6-2, you will need to pick your method for signing up; I just used my Github sign-

in, but it’s up to you.

Chapter 6 SeCurity

https://auth0.com/docs/protocols/oidc
https://auth0.com/

244

Once signed in, you may need to pick the plan, although for most the free plan

should have been selected automatically; in Figure 6-3, I’m picking the free plan. It is

limited to 7K active users, but for a demonstration app or even a beginning application,

it should be more than enough.

Figure 6-2. Start

Chapter 6 SeCurity

245

Now we will start with configuring the application. In Figure 6-4, you will start one of

two steps; in the first step, decide on a subdomain name for your Auth0 app and a region

majority of your clients will be located (you obviously can’t use mine).

Figure 6-3. Click the START NOW for $0/month plan

Chapter 6 SeCurity

246

Next in Figure 6-5, choose the ACCOUNT TYPE; this part does not matter and I

barely filled it in.

Figure 6-4. Pick our domain name and region

Chapter 6 SeCurity

247

Figure 6-5. Fill in more relative information

Chapter 6 SeCurity

248

Once completed, we will get the dashboard that appears in Figure 6-6.

At this point, we have our dashboard and a login set up but nothing that actually can

interact with the application. We need to add two things: one is a user, and the other

we need to add is to create an application to use. This will provide us a client id that our

framework can interact with. The applications are independent of our user database,

and we can have them interact with many or just a few of them. Each application allows

for different types of authentication flows, from a web flow, to device flow, to service, to

service communication. Let’s go through the process of creating an application that will

work with device flows.

Create Authorization

On your left-hand navigation, you will see Applications; click the link and select

CREATE; you will get a set of options like in Figure 6-7.

Figure 6-6. The interactive dashboard for our Auth0 managed application

Chapter 6 SeCurity

249

There are four different options, and we can use two of them for our applications:

• Native applications – The best way to describe these is any

application that requires a login that is NOT from a website. This will

be your mobile apps, Apple TV apps, and any device applications,

which in our case are your IoT device apps.

Figure 6-7. List of application types we can create

Chapter 6 SeCurity

250

• Single-page web applications (SPAs) – These are your React, Angular,

and any modern web application. You’d likely use this as well if you

wanted a support application, but the coding of this is out of scope

for our book.

• Regular web applications – These are more traditional, older style

applications – your Java and ASP.NET apps. Many more traditional

shops would use this approach, but to be fair, the SPAs are the more

common way of creating web applications these days.

• Machine to machine – These are for applications in your

microservice world that do not have a user associated with them.

This includes any batch application that needs to access endpoints

or any service-to-service calls that are allowed for unauthenticated

users.

To begin with, let’s create the native application first; this will allow us to

authenticate and test against a user. Write any name you want and then go ahead and

click Submit. Once you submit, you will be brought to the “Quick Start” page; select the

second tab “Settings” and it should look like Figure 6-8.

Chapter 6 SeCurity

251

Figure 6-8. Native application created

Chapter 6 SeCurity

252

This shows that our native application has been created; here you will see the client

ID and are able to use the secret. We will be using this client ID later when validating

our login. So take note of it and copy it to a text editor, since we will be using it shortly.

There is one more interesting section to look at; scroll down to the bottom of the page

and select “Advanced Settings” and then “Grant Types”. I have that shown in Figure 6-9

showing the grant types.

Figure 6-9. Grant Types for our native authentication

These will be different for each application type (with some overlap), but they are also

what makes the applications unique to each other and the different purposes they serve.

As you can see for this one, the Device Code grant will be what will allow us to use the

device authorization flow as our authentication mechanism. Make sure it is selected; if not,

your first query will return an error stating device code not allowed for the client.

Take note of this screen; we will circle back to it in a bit when we make our first

query. For now, let’s move on to creating a user.

Chapter 6 SeCurity

253

Figure 6-10. Users to add to

Create User

We could use Google or Facebook authentication, but for the book, we are going to use

the Auth0 existing authentication model. Let’s set up an example user to use. Head

back to the main dashboard page and click “Users & Roles”; you will get a page like in

Figure 6-10.

Chapter 6 SeCurity

254

In Figure 6-11, go ahead and create a user using your email address and whatever

password you want.

Once created, you will have a user registered and will be able to start authenticating

against that user. Figure 6-12 shows the final screen when the user is created.

Figure 6-11. Creating a user

Chapter 6 SeCurity

255

However, if you notice under the EMAIL header, it is marked as “pending”; go to your

email account and you will have a verification email waiting for you. Figure 6-13 has a

sample of that email you should receive, and click “VERIFY YOUR ACCOUNT”.

Figure 6-12. User created screen

Chapter 6 SeCurity

256

Now that will finish your user setup. As of right now, we have our user set up in

Auth0 as well as an application set up to create Open Id authentication queries against to

receive a JWT that we will be able to use for OAuth 2 interactions.

 Authenticating
We haven’t focused it yet on our application, but part of what we are going to have to do

is have a user associated with the records. After all, we are building this system to handle

more than just our own personal device. We want this to handle a multitude of devices

Figure 6-13. Email verification

Chapter 6 SeCurity

257

and users connecting to our system. What we are going to go over is how to use the

command line to trigger the device flow authentication, authenticate, and then use the

JWT that is returned to make subsequent user authenticated calls to our retrieval service.

 Device Flow

We went over the device flow earlier; now let’s implement it. Later we will have the

device make these calls, but let’s call from the command line for now. We will make a

call to the device/code endpoint on Auth0 https://rustfortheiot.auth0.com/oauth/

device/code. This endpoint takes a few parameters:

• client_id – If you recall before when I mentioned we needed to

circle back to the client Id, well here is where you need it. Since we

can have multiple applications at the rustfortheiot endpoint, this

determines WHICH application we will choose.

• scope – A space separated delineation of what type of token with

what access should be created.

The scopes help us define the authorization and what information will be returned

by them for use. You can include one or many of the scopes. In Table 6-1, we list what

each defines for the authorization.

Table 6-1. Variety of scopes for Auth0

Scope Description

openid By default, this system will give us back an access token to use that can be traded

in for user authentication information. But if we want a JWt that we can use that has

user info in it already, supply the openid, and we will get an id_token back as well.

offline_access if this is going to be a longer-lived request (like with a device), we will need the

ability to refresh our access token periodically; if not, the user will have to re-

authenticate. this scope will have the response including a refresh_token that

can be used for re- authorizing.

profile By default, the access_token can only be traded in for the subject; if you want

the ability to gain more than that, supply the profile scope.

email if all you need though is the email, you can supply just the email scope to be able

to retrieve the user info for it.

Chapter 6 SeCurity

https://rustfortheiot.auth0.com/oauth/device/code
https://rustfortheiot.auth0.com/oauth/device/code

258

We will use all those scopes for our example request, so that we can see the full

results. Let’s put it all together for a command-line request. In Listing 6-1, we curl the

device/code endpoint with our parameters. This will give us back a URL and device

code that we can go to the site and fill in the request to start the login process.

Listing 6-1. Curl request to get a device code and URL

➔ curl --request POST \

 --url 'https://rustfortheiot.auth0.com/oauth/device/code' \

 --header 'content-type: application/x-www-form-urlencoded' \

 --data 'client_id=rsc1qu5My3QZuRPZHp5af5S0MBUcD7Jb' \

 --data scope='offline_access openid profile email'

{

 "device_code":"EINQsGUod_tIuDO05wW2kZ8q",

 "user_code":"KSPT-LWCW",

 "verification_uri":"https://rustfortheiot.auth0.com/activate",

 "expires_in":900,

 "interval":5,

 " verification_uri_complete":"https://rustfortheiot.auth0.com/

activate?user_code=KSPT- LWCW"

}

The JSON returned a few properties; let’s take a look at what these properties are:

• device_code – This is a unique code we will use for subsequent calls

to the system in order to receive back the access_token and to check

whether the user is logged in.

• user_code – This is the code the user will type in, in the uri to

recognize the device that is trying to be authenticated. This is a short

code to make it easy for a person to remember to type into a web page.

• verification_uri – This is the URI to go to log in with the user code.

Chapter 6 SeCurity

259

• expires_in – This is the amount of time in seconds that the user has

to be able to log in before the device code expires; this is 15 minutes –

plenty of time.

• interval – This is the interval in seconds that you should recheck if

the user has been authenticated.

• verification_uri_complete – This is the complete URI for

verification; this isn’t as necessary to use for a visual device

authorization, but if your authorization is triggered by a text message

or other means, it will be good to use to forward to the system.

The preceding device_code is used to get a status of your login; this will be what our

device uses to check if the user is authenticated. We will make a call to the oauth/token to

determine whether or not a user is authenticated passing in the preceding device_code

and passing in a grant-type of device_code. If you recall from earlier, device_code grant

type was unique to our native application, which is why we choose it.

We have to periodically check the server to see if the user has been authenticated;

in Listing 6-2, we perform a request against the oauth/token endpoint to do this check.

Note: We haven’t actually authenticated yet so we would expect it not to work.

Listing 6-2. Curl request to check if the user has been authenticated

➔ curl --request POST \

 --url 'https://rustfortheiot.auth0.com/oauth/token' \

 --header 'content-type: application/x-www-form-urlencoded' \

 --data grant_type=urn%3Aietf%3Aparams%3Aoauth%3Agrant-type%3Adevice_code \

 --data device_code=EINQsGUod_tIuDO05wW2kZ8q \

 --data 'client_id=rsc1qu5My3QZuRPZHp5af5S0MBUcD7Jb'

{

 "error":"authorization_pending",

 "error_description":"User has yet to authorize device code."

}

Chapter 6 SeCurity

260

The grant_type is a URL-encoded representation of the string

urn:ietf:params:oauth:grant-type:device_code and is part of the OAuth 2 spec for

device access token request.3 And it has done that, given us an authorization_pending

response since we haven’t been authenticated. Besides being successful, let’s take a look

at what other error conditions we may have, in Table 6-2.

How do we get a successful response? Let’s go back to that initial URL we are given to

and visit the site; in Figure 6-14, we go to the site https://rustfortheiot.auth0.com/

activate and enter the user code.

3 https://tools.ietf.org/html/draft-ietf-oauth-device-flow-11

Table 6-2. Various response errors for OAuth token

Code Description

authorization_pending the user has not attempted to authorize against the given user code.

slow_down your application is requesting status of being authorized too much; slow

down your requests.

expired_token the token has expired before the user has been authorized. in our case,

this means there was no authorization within 15 minutes.

access_denied the user has been denied access to the given resource.

Chapter 6 SeCurity

https://rustfortheiot.auth0.com/activate
https://rustfortheiot.auth0.com/activate
https://tools.ietf.org/html/draft-ietf-oauth-device-flow-11

261

Figure 6-14. Authorizing the device

Chapter 6 SeCurity

262

Here you enter the code and select “Confirm”; you will then be requested to log in

with the username and password we set up earlier. If everything is valid, you will receive

a confirmation message like in Figure 6-15.

Figure 6-15. Confirming the authentication

Chapter 6 SeCurity

263

You will notice I have added the Apress logo; for the login page, you are able to

customize those screens in the dashboard of Auth0 as well.

Let’s go back to our oauth/token and make another request now that we are

authorized; in Listing 6-3, we get a standard OAuth 2 response; that will be familiar to

you if you’ve used OAuth 2 in the past.

Listing 6-3. Using the previous curl here is the new response to the

authenticated system

{

 "access_token": "sHiy83rLMLEqrxydFMOxjLVyaxi-cv_z",

 "refresh_token": "hnsureBL2jfb62UINDmgjt4F6vZBp0etExeoDja5qGy1Y",

 "id_token": "eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1N...xTA8WsM3vxC0Hwy__2g",

 "scope": "openid profile offline_access",

 "expires_in": 86400,

 "token_type": "Bearer"

}

But for those that haven’t, let’s take a look at what each of these properties means. In

Table 6-3, we break down each of the properties from the token. Also note that id_token

is usually much longer; I shortened it so it would take up less space.

Table 6-3. Our tokens for authentication

Token Description

access_token the access token is used as the token that is passed in the authorization phase

to check the credentials of the calling application. token can be used to inform

the api that the bearer of the token has been authorized to access the api.

refresh_token When the access token has expired, the refresh token can be used to go out

and obtain a new access token without being required to re-authenticate the

user again.

scope the scopes the tokens have access to.

id_token the iD token is used to cache and parse the user profile information after a

successful authentication. they can then use this data to personalize the user

experience.

Chapter 6 SeCurity

264

In our token retrieval, the acccess_token has a 24-hour life (computed by the

expires_in); once that hits, the application should use the refresh_token to go out and

get another access_token before making any more calls to the backend system. The

refreshing of the token will be handled by the framework we use, and you won’t have to

code for it on your own. But we will use all these tokens in our application.

The ID token is not necessary to obtain user information; you could obtain the same

information from the /userinfo endpoint by sending the access token to it; however,

this saves us a call, and since this comes back from the authentication service we know,

we know it’s a trusted data.

 Processing the Tokens

Now that we have our tokens, what do we do with them? We can parse them and use

them for access and deciding what to do with the user. For our system, all the calls will

be requiring a user for each call, meaning we will need to translate the tokens to our user

and use it for access. Let’s take a look at each of the tokens we have and how we are going

to use them and the code for it.

ID Tokens

The first one to go over is the ID tokens; the ID tokens as we mentioned before are only

to be used by the authentication section of the application and only to be used to retrieve

more data about the user. You shouldn’t use these as an access token and send it to other

services. The token is listed in Listing 6-3 with the field id_token. The token is a Java Web

Token (JWT), and they are easily decomposable to retrieve data from without calling out

to any other service. In fact, if you haven’t used one before, there is a site jwt.io which

can help you examine the contents of the token. Go ahead and take the contents of the

token output above (from your own screen, maybe a bit hard to copy that entire token

from a book) and paste it into jwt.io under the Encoded tab. You should get an output

similar to Figure 6-16.

Chapter 6 SeCurity

265

This reveals quite a bit of data including the algorithm that is used to encode the

signature, subject, expiration, and so on. Of course, the big question is how do you trust

this data? Since it’s a decomposable JWT, anyone can create one:

 1. You called this from a localized microservice authentication,

and this was the direct response. Hence, it wasn’t given by any

middleman service.

 2. We can use a public key from the authentication provider in

our service to guarantee this originated from the resource we

suspected it to be from.

If you look back at Figure 6-4, look at “VERIFY SIGNATURE”; we have an RS256

public key for Auth0 that will be unique for your account. You can download the

URL at http://rustfortheiot.auth0.com/.well-known/jwks.json (replace the

rustfortheiot with your domain). We can use this key to help decode the JSON in our

Figure 6-16. The decomposition of the encoded id token

Chapter 6 SeCurity

http://rustfortheiot.auth0.com/.well-known/jwks.json

266

application with JWKS. In our code, not only will we be able to decipher the JWT to get

the subject or any other fields we want, but the main thing is it guarantees the JWT came

from the source we expected it to be from.

Programmatically Parse

Now being able to run curl scripts and decode from the site is all well and good for

testing and to verify you have all the right permissions to make everything work. But let’s

dive into some code. We’ll start with parsing an ID token with alcoholic_jwt.

We will need to use JWKS to validate the token; there were not many crates JWT

parsing that allowed it. Luckily, I stumbled upon one that isn’t often used for JWT but

was designed specifically for JWKS validation, that is, alcoholic_jwt. In Listing 6-4,

I have the added crates we will use.

Listing 6-4. Crates used to allow parsing of the User ID JWT

hyper = "0.10.16"

alcoholic_jwt = "1.0.0"

reqwest = "0.10.4"

http = "0.2.1"

Let’s create a function that will take our JWT slice, the JWKS, and the authentication

URL and validate the slice and return the user (which is stored in the subject). In Listing 6-5,

we decode the JWT to receive the User ID from it.

Listing 6-5. Parsing the user ID from the JWT

use alcoholic_jwt::{JWKS, Validation, validate, token_kid, ValidJWT};

fn parse_id_token(jwt_slice: &str, jwks: &JWKS, auth_url: &str) ->

UserResult {

 debug!("JWT Slice :: {:?}", jwt_slice);

 // Several types of built-in validations are provided:

 let validations = vec![

 Validation::Issuer(format!("https://{}/", auth_url).into()), ①
 Validation::SubjectPresent, ②
 Validation::NotExpired, ③
];

Chapter 6 SeCurity

267

 let kid = token_kid(&jwt_slice) ④
 .expect("Failed to decode token headers")

 .expect("No 'kid' claim present in token");

 let jwk = jwks.find(&kid).expect("Specified key not found in set");

 //let result: ValidJWT = validate(jwt_slice, jwk, validations).

expect("Token validation has failed!");

 let user_id = validate(jwt_slice, jwk, validations)? ⑤
 .claims.get("sub").unwrap().to_string(); ⑥
 Ok(user_id) ⑦
}

async fn jwks_fetching_function(url: &str) -> JWKS { ⑧
 use std::io::Read;

 use std::collections::HashMap;

 let jwks_json: String = {

 let url_jwks = format!("https://{}/.well-known/jwks.json", url);

 let mut res = reqwest::get(url_jwks.as_str()).await.unwrap();

 res.text().await.unwrap()

 };

 let jwks: JWKS = serde_json::from_str(jwks_json.as_str()).

expect("Failed to decode");

 jwks

}

 ➀ Sets to validate the issuer against the rustfortheiot JWKS.

 ➁ Sets to validate the subject is present since we need that to get the

user id.

 ➂ Sets to validate that the token is not expired.

 ➃ Extracts the kid portion from the token.

 ➄ Uses the validations we created earlier to validate the token.

 ➅ Retrieves the subject from the claim.

Chapter 6 SeCurity

268

 ➆ Returns the user id as part of the token.

 ➇ Functions to retrieve the JWKS and parse it.

This code does not have to be unique for any particular tier and can be used on the

backend to deliver content to a website or on our device to display the user to the screen.

But let’s move on to discussing the role the access token will play.

Access Tokens

The access token is what is used to send between microservices, so that when service

A is working with a user, to tell service B about the user, service B can then perform

verification of the token to make sure the user is still active and can then trade that token

to the authorization service to get more information about the user like email address

or other data. Using a token allows service B to be stand-alone and more secure, since if

any outside service tried to send a random access token, it wouldn’t validate. Having it

call back out to the authorization server also makes sure that the token is still active and

usable. Access tokens are sent to a server in the header as either opaque or JWT with the

formula of

Authorization: Bearer <access_token>

For Auth0, we will be sending the tokens as opaque. Once your microservice or your

api gateway receives the token, it can check the authorization server that this is a valid

token, and you can continue on the request. For us, we are going to also get the subject

off the token and store it as a user id on the request so that our controllers can perform

actions on it. On Auth0, our endpoint is /userinfo to get the user id from the opaque

token. In Listing 6-6, we will retrieve from the /userinfo endpoint the data with our

access_token we previously retrieved.

Listing 6-6. Retrieving the user data from the user info

➔ curl --request GET \

 --url 'https://rustfortheiot.auth0.com/userinfo' \

 --header 'Authorization: Bearer 5BPHIDN84ciNsY4PeOWRy080mB_4R69U' \

 --header 'Content-Type: application/json'

{

 "sub":"auth0|5d45ceebede4920eb1a665f0",

 "nickname":"nusairat",

Chapter 6 SeCurity

269

 "name":"nusairat@gmail.com",

 "picture":"https://s.gravatar.com/avatar/05927361dbd43833337aa1e71fdd96

ef?s=480&r=pg&d=https%3A%2F%2Fcdn.auth0.com%2Favatars%2Fnu.png",

 "updated_at":"2019-10-15T03:17:11.630Z",

 "email":"nusairat@gmail.com",

 "email_verified":true

}

You will notice we get more than the subject back; we also get the nickname, name,

picture, and email; this is because earlier we not only asked for the openid scope but also

the profile scope which brings back more details for the access token. Let’s now use

this in our code to check the user id and their authorization level.

The user info retrieval does not check the authentication status, but gets the user.

In Listing 6-7, we take the request, parse out the token from the header, and use the

token to retrieve the user info which will contain the subject.

Listing 6-7. Parsing the user ID from the access token

fn parse_access_token(request: &Request, auth_url: &str) -> UserResult {

 // Get the full Authorization header from the incoming request headers

 let auth_header = match request.headers.get::<Authorization<Bearer>>()

{ ①
 Some(header) => header,

 None => panic!("No authorization header found")

 };

 debug!("Auth Header :: {:?}", auth_header);

 let jwt = header::HeaderFormatter(auth_header).to_string(); ②
 debug!("JWT :: {:?}", jwt);

 let jwt_slice = &jwt[7..];

 debug!("JWT Slice :: {:?}", jwt_slice);

 let item = block_on(retrieve_user(jwt_slice, auth_url));

 Ok(item.unwrap())

}

Chapter 6 SeCurity

270

#[derive(Deserialize, Debug)]

struct Auth0Result {

 iss: String,

 sub: String,

 aud: String

}

async fn retrieve_user(jwt: &str, auth_url: &str) -> Result<String,

reqwest::Error> {

 use std::collections::HashMap;

 use http::{HeaderMap,HeaderValue};

 let url = format!("https://{}/userinfo", auth_url);

 // headers

 let mut headers = HeaderMap::new();

 headers.insert("Authorization", HeaderValue::from_str(jwt).unwrap());

 headers.insert("Content-Type", HeaderValue::from_str("application/

json").unwrap());

 let mut json = reqwest::Client::new() ③
 .get(&url)

 .headers(headers)

 .send()

 .await?

 .json::<Auth0Result>()

 .await?;

 Ok(json.sub)

}

 ➀ From the header retrieves the Authorization Bearer token, making

sure it exists.

 ➁ Converts the token to a string; this now would contain Bearer

<access_token>.

 ➂ Calls out to the /userinfo endpoint to trade the token for user data.

Chapter 6 SeCurity

271

Implement Authorization Check

Let’s implement this into our API code. With that set of code, we have discussed we

can now retrieve the user info. But I don’t want to make these calls for each individual

Iron action each time. In addition, I want to make sure that for certain calls an access

token is ALWAYS supplied, and if not, the call should be rejected. Let’s take a look at our

requirements to have our framework run automatic verification and injection for each

service call:

 1. Use middleware to retrieve the user id from the access token.

 2. Have the middleware return an error if there is no access token.

 3. Only have this middleware called for certain endpoints.

We’ve created the middleware a few times now, so most of this code should look

very familiar. We will start in Listing 6-8 with a struct AuthorizationCheck that we

will instantiate in our routes to create the authorization middleware. This will take the

authorization url as a parameter that we are going to set in the args.

Listing 6-8. Creating the authorization check struct for our authorization

use futures::executor::block_on;

pub struct AuthorizationCheck {

 jwks: JWKS,

 // static and this will never change once set

 auth_url: String

}

impl AuthorizationCheck {

 pub fn new(auth_url: &str) -> AuthorizationCheck {

 // Get the jwks

 let jwks = block_on(jwks_fetching_function(auth_url));

 AuthorizationCheck {

 jwks: jwks,

 auth_url: auth_url.to_string()

 }

 }

}

Chapter 6 SeCurity

272

Now is the bigger set of functions. This set we’ve seen before. We are going to create

the struct AuthorizedUser to hold the results of the parse_access_token that we created

previously. That data will then be inserted into the request extensions (if you recall, this

uses the type of the struct as the key in the map to find the data). And finally, we will use

the UserIdRequest as a trait that when on our controller can retrieve the user id with the

call request.get_user_id. This code is laid out in Listing 6-9.

Listing 6-9. Creating the authorization check struct for our authorization

pub struct AuthorizedUser { ①
 user_id: String

}

impl AuthorizedUser {

 pub fn new(user_id: String) -> AuthorizedUser {

 AuthorizedUser {

 user_id: user_id

 }

 }

}

pub struct Value(AuthorizedUser);

impl typemap::Key for AuthorizedUser { type Value = Value; }

impl BeforeMiddleware for AuthorizationCheck {

 fn before(&self, req: &mut Request) -> IronResult<()> {

 let access_token = parse_access_token(&req, self.auth_url.as_str()); ②
 match access_token {

 Ok(user_id) => {

 req.extensions.insert::<AuthorizedUser>(Value(AuthorizedUse

r::new(user_id)));

 Ok(())

 },

 Err(e) => {

 let error = Error::from(JwtValidation(e)); ③

Chapter 6 SeCurity

273

 Err(IronError::new(error, Status::BadRequest))

 }

 }

 }

}

pub trait UserIdRequest { ④
 fn get_user_id(&self) -> String;

}

impl<'a, 'b> UserIdRequest for Request<'a, 'b> {

 fn get_user_id(&self) -> String {

 let user_value = self.extensions.get::<AuthorizedUser>().chain_

err(|| "No user id, this should never happen").unwrap();

 let &Value(ref user) = user_value;

 // Clones it since we want to pass handling of it back

 user.user_id.clone()

 }

}

 ➀ The AuthorizedUser struct that will store the results of the parse

tokens return.

 ➁ The middleware call that will parse the token; if an Ok is returned, we

will extract the token from the success.

 ➂ If not Ok, we will return a Json validation error back to the caller.

 ➃ The trait that will be applied to controllers to retrieve the user id.

This sets up all the middleware; now we just need to tie it into our router model. If

you recall earlier, we divided up our health and non-health calls to two different chains.

We have the /api chain and /healthz. With this, we are going to have the authorization

middleware run on the /api chain. In Listing 6-10, you can see the modified create_

links method with the authorization check.

Chapter 6 SeCurity

274

Listing 6-10. Modified create_links with authorization check, in file src/http.rs

fn create_links(chain: &mut Chain, url: &str, auth_server: &str) {

 use crate::authorization::AuthorizationCheck;

 // Create the middleware for the diesel

 let diesel_middleware: DieselPg = DieselMiddleware::new(url).unwrap();

 // Authorization tier

 let auth_middleware = AuthorizationCheck::new(auth_server);

 // link the chain

 chain.link_before(auth_middleware);

 chain.link_before(diesel_middleware);

}

As you can see, the healthz will have no extra middleware added, but our media and

comments will.

Refresh Tokens

Finally, let’s discuss the refresh tokens. As we stated earlier, the access tokens have a

time limit and will be up to our device application to know when they expire. When they

do, we will have to obtain a new access token that we can use, along with a new id token

as well. This is a relatively simple process where we once again call the ouath/token

endpoint, except this time, we will pass in as the grant type refresh_token, so the server

realizes we are passing in a refresh_token to it. In Listing 6-11, we make a curl call back to

the server to get a new token.

Listing 6-11. Retrieve a new set of tokens using the refresh token as a basis

➔ curl --request POST \

 --url 'https://rustfortheiot.auth0.com/oauth/token' \

 --header 'content-type: application/x-www-form-urlencoded' \

 --data grant_type=refresh_token \

 --data 'client_id=rsc1qu5My3QZuRPZHp5af5S0MBUcD7Jb' \

 -- data client_secret=C4YMZHE9dAFaEAysRH4rrao9YAjIKBM8-FZ4iCiN8G-

MJjrq7O0alAn9qDoq3YF6 \

Chapter 6 SeCurity

275

 --data refresh_token=hnsureBL2jfb62UINDmgjt4F6vZBp0etExeoDja5qGy1Y \

 --data 'redirect_uri=undefined'

 {

 "access_token":"2JbKDWr5BBqT-j5i0lYp-nRbA1nrnfjP",

 "id_token":

 "eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiIsImtpZCI6Ik5qSXhOek0xTmpjd05r

RTNOa1E1UlVSRE1rUXpPVFV5TXpBeE1FSTBRakpGTVRnME5rTTVOQSJ9.eyJpc3

MiOiJodHRwczovL3J1c3Rmb3J0aGVpb3QuYXV0aDAuY29tLyIsInN1YiI6ImF1dGg

wfDVkNDVjZWViZWRlNDkyMGViMWE2NjVmMCIsImF1ZCI6InJzYzFxdTVNeTNRWnV

SUFpIcDVhZjVTME1CVWNEN0piIiwiaWF0IjoxNTcxMTkwNTU1LCJleHAiOjE1Nz

EyMjY1NTV9.km3QnC28qqWnwvhPVO2T2oW8O0EDUFilLUOgerRAas7YHihmFrYg

SnovVHBmsWjTMKbHkPmX3RCevyOH- AwqZ1DdOe7ckcFopd- lChubpkegxFBEmhdGah

NQS7xZWY8_JV3y4ytiLlwfgi6LvJaWJYk0bcFKg_Sn37X7UoJkZ4hzqOs82bxLKK

V01_yLJHspYry9pt_9yokj0Mo77jlGU62oZbdHvUHdYqrxZDQOasLGlrkRMNrmG83

A2U- QlAotIYBbO0KoeGBRG3lTg7Vd4RazlMim9WYHzqslEHV85ksUFGu_oXiIztgN4

fZEjWzWNzweCxoDJsg4JHJ7AlW_cg",

 "scope":"openid offline_access",

 "expires_in":86400,

 "token_type":"Bearer"

}

Now that we have the new set of tokens, use them and set your expiration again.

You can revoke access token either via code or via the UI; you may have this as part of

your application to handle situations where a device is stolen or compromised, and you

want to prevent that device from talking to the services.

Much of the code you see here and curls will be incorporated when we get to Chapter 8

and start the device coding itself. But I didn’t want to overly divide up the concepts of

Authorization and Authentication in two chapters. We will revisit some of these calls

later, but for now, we have our authorization and authentication.

 Securing MQTT
Our first pass of using MQTT for our application, we used TCP for the communication.

The TCP connection to the message queue was not only not secure from an

authentication perspective, but most importantly it was unencrypted. This means if

Chapter 6 SeCurity

276

anyone sniffed our packets being sent from our devices, they would see not only the

packages we sent but where we send them to. And before we were using Protobuf,

it meant it was even easier to view. This means anyone could not only send data as

anyone, but could also receive all the topics that we are deploying revealing customer

data. This would be a major breach of data.

There are many ways of solving for security and encryption with a device

communicating or your backend services communicating. There are two main ways of

solving these problems:

 1. SSL (Secure Sockets Layer) – Like most backend application, we

use SSL to create secure communication between the client and

the server. To do this, we will have to create certificates for the

server that the message queue server uses for running the SLL

certs. In addition, we will have to create certs for each client that

connects to our message queue server.

 2. Authentication – Another way to secure the site is to have

authentication. This makes it so a particular user can only access

the message queue. In fact, you can lock it down even further by

only allowing the user to have access to specific topics.

There are a few ways to achieve, but essentially the two are to let the message queue

application handle it or have a sidecar handle both. Letting the message queue handle

it means using the tools built into the MQ for SSL and Authentication to run the SSL and

Authentication. Most MQs out there, and the one we are using, have SSL handlers out

of the box as well as authentication. The other way is something that will make more

sense in the next chapter when we talk about deployment, and that is using a sidecar

injector. A sidecar injector will run along our application and intercept all requests to the

service. You can use this to force your calls to all be SSL and authenticated. This can be

especially useful in the authentication realm but also if you are not entirely happy with

the SSL implementation. In addition, you could replace just one or the other piece with

the customization.

If you have good expertise in SSL and Authentication, then the sidecar maybe for

you; however, for our implementation, we are going to stick with using MQ SSL model.

Chapter 6 SeCurity

277

 Certificates
Certificates are used to communicate and encrypt data between two endpoints so that

not only can someone in the middle read the data being transmitted but also so that you

can trust that who made the call was the person you thought made the call. The use of

certificates has been out since the early days of the Web, but in those days, people only

used them to transmit credit cards and other highly secure pieces of data. Today almost

every website uses them, and since 2014, Google will give your site a higher ranking

when using them. There are essentially two types of certificates, certificate authority

(CA) and self-signed.

 Certificate Authority (CA) vs. Self-Signed Certificates

We will be talking about using CA vs. self-signed Certificates throughout the next two

chapters. By rule, we will be using CA certs for our deployed environments and self-

signed for our local environments. Certificate authority certs are certificates that are

generated and signed by a recognized certificate authority. The main reason to use them

is a guarantee that the domain you are connecting to is truly that domain owned by the

person you expect it to be that site. There are various certificate authorities you can use;

we will be using letsencrypt. Letsencrypt is free for the amount of requests we would

need, and most applications have easy integration into letsencrypt.

When deploying locally, we cannot use signed certificates (well easily). Signed

certificates are tied to a domain that can be resolved and are designed for QA and

Production testing or any deployed environment. However, we need to test locally

against a local MQ and local microservices. To do that, we will use self-signed certificates

that will allow us to create the certs and destroy them as needed.

You can deploy self-signed certificates to deployed environments, but then you

will have to make sure your system is not enforcing that they are certificate authority

signed. You will notice the use of self-signed certificates in websites when they ask you to

continue on a cert that is not CA certified.

Chapter 6 SeCurity

278

 Creating Server Certificates

For us, we are going to use most of our certs that we create for our MQTT

communication.

Before we start, there will be many different file extensions that we will use in this

section; it’s good to get an overview of the differences:

 1. .PEM – This is an RFC 1421 and 1424 file format. PEM stands for

Privacy Enhanced Mail and came about as a way to securely send

emails, but now it’s used for a great many other security chains.

This is a base65 x509 certificate that either can contain the public

certificate or could contain the entire certificate chain including

public key, private key, and the root certificates.

 2. .KEY – The .key is mostly commonly used as the private key and

will be formatted as PEM file containing just the private key that

we should never share.

 3. .CSR – This is an RFC 2986 specification in a PKCS10 format.

CSR stands for Certificate Signing Request and contains all the

information needed to request a certificate to be signed by a

certificate authority. The digitally signed certificate will be signed

and returned with its public key to be used for digital certs.

Generate CA Root Certificate

First off, we need to generate the private key we are going to use for our self-signed CA

Root Certificate. In Listing 6-12, we generate an RSA private key with length of 2048. We

are going to name the cert RustIOTRootCA.

Listing 6-12. Generate an RSA private key

openssl genrsa -out RustIOTRootCA.key 2048

This is the private key, the one that if this was a production system, you’d want to

keep in a safe place. If someone else got a hold of that key, they could compromise your

identity. Usually you use a CA provider to take care of your key that is generated.

Chapter 6 SeCurity

279

Next, we are going to generate the Root Certificate from the key and give it an

expiration of 1826 days or roughly 5 years. Could in theory be longer but 5 years is plenty

of time for testing purposes. In Listing 6-13, we generate this key.

Listing 6-13. Generate an x509 certificate

➔ openssl req -x509 -new -nodes -key RustIOTRootCA.key -sha256 -days

1826 -out RustIOTRootCA.pem ①
You are about to be asked to enter information that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) []:US ②
State or Province Name (full name) []:CA

Locality Name (eg, city) []:SF

Organization Name (eg, company) []:

Organizational Unit Name (eg, section) []:

Common Name (eg, fully qualified host name) []:localhost ③
Email Address []:

 ➀ Command to create the RustIOTRootCA cert using sha256 and

creating an X509 certificate.

 ➁ Add in a few fields like the country name and state.

 ➂ This is normally the fully qualified domain name; since we are

running it from localhost, use that instead of a regular name.

The root cert is used as the start of your trust train. Certificates we generate after this

will all use the Root to verify the authenticity up the chain. The Root CA can be used to

generate any certificate on our site.

Chapter 6 SeCurity

280

Message Queue Server Cert

But first, let’s start with creating the cert for the message queue itself. We will generate

the private key and the cert for the MQTT, much like we did before with similar

commands even. The big difference will be now we have a root CA we can use as well.

Like in the previous example, let’s start by generating the private key in Listing 6-14.

Listing 6-14. Generate an RSA private key for the MQ

openssl genrsa -out EmqttIot.key 2048

Now let’s use that private key to create a certificate request; the certificate request

is used to create a message to the CA requesting a digitally signed certificate. Since we

are performing this all as self-signed, we will create that certificate request, then turn

around, and create the PEM. In Listing 6-15, we are creating our CSR for the MQTT.

Listing 6-15. Generate a CSR for the MQ

➔ openssl req -new -key ./EmqttIot.key -out EmqttIot.csr ①
You are about to be asked to enter information that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) []:US

State or Province Name (full name) []:CA

Locality Name (eg, city) []:San Mateo

Organization Name (eg, company) []:Apress

Organizational Unit Name (eg, section) []:IoT

Common Name (eg, fully qualified host name) []:localhost ②
Email Address []:

Please enter the following 'extra' attributes

to be sent with your certificate request

A challenge password []:

Chapter 6 SeCurity

281

 ➀ Command to create our CSR from the key we created previously.

 ➁ Marking the localhost since we are running this locally.

Now that we have a CSR and a private key, we can use that to create a request for

an actual certificate that we will use for the MQ. This will appear similar to the previous

PEM creation, except this time we are going to reference the Root CA in Listing 6-16.

Listing 6-16. Generate the certificate for the message queue

➔ openssl x509 -req -in ./EmqttIot.csr \ ①
 -CA RustIOTRootCA.pem \ ②
 -CAkey RustIOTRootCA.key \ ③
 -CAcreateserial \ ④
 -out EmqttIot.pem \ ⑤
 -days 1826 -sha256 \ ⑥
Signature ok

subject=/C=US/ST=CA/L=SF/CN=localhost

Getting CA Private Key

 ➀ Command to create a x509 certificate using the previously created

CSR as the basis for the request.

 ➁ The Root CA certificate authority file we created previously.

 ➂ The private key for that CA that only the owner should have.

 ➃ This flag creates a file containing the serial number. This number is

incremented each time you sign a certificate.

 ➄ Defining the file to output the certificate for the MQ to.

 ➅ Defining the days this certificate is active for and the cipher to use.

There will be two files generated from this request: the EmqtIot.pem that we defined

to be requested and also the RustIOTRootCA.srl serial number that we used.

At this point, we have created our Root CA and the certificate for our MQTT Cert;

in addition, we no longer need the EmqttIot.csr that we created, and you can delete it

now if you want. We are able to now revisit our MQTT server itself.

Chapter 6 SeCurity

282

Updating the MQTT Server

In order to do this, we are going to have to deactivate our old MQTT server that we

created since they will be sharing some port numbers. Go ahead and run docker stop

mqtt-no-auth; this will turn off the previous MQTT server that did not have certificates.

For the MQTT server, we are going to make use of the certificates we just created

to set up the SSL port on the MQTT server so that we can accept only SSL calls with a

trusted chain. The EMQTT we are using supports the use of certificates out of the box; it

will be up to us to configure them. By default, there is an EMQTT configuration file that is

used when running the application, and the docker command we are using can update

them with environmental variables.

We need to set two things. One is to set the certificates so that we have SSL

connectivity. This will allow us to access the MQ so long as our client is using a trusted

Root CA as well for communication. While this will make sure all our traffic is over SSL

and thus encrypted, it would still allow anyone the ability to communicate with our

endpoint as long as they had a CA certificate.

If you recall, we are also using this as a secure mechanism to control who the clients

are; thus, we also need to tell the MQTT server to only accept connections with valid

client-side certificates as well. Those certificates can only be generated if one has the

Root CA private key, which should be just us.

Let’s look at what updates we will need to the configuration files; Listing 6-17 has our

eventual settings.

Listing 6-17. Example of the properties we need to set for our certificates to work

listener.ssl.external.keyfile = /etc/certs/EmqttIot.key ①
listener.ssl.external.certfile = /etc/certs/EmqttIot.pem ②
listener.ssl.external.cacertfile = /etc/certs/RustIOTRootCA.pem ③
listener.ssl.external.verify = verify_peer ④
listener.ssl.external.fail_if_no_peer_cert = true ⑤

 ➀ The private key file for the EMQTT client.

 ➁ The public certificate for the EMQTT client cert.

 ➂ The public root CA certificate.

 ➃ Verifies the client-side identities by their certificates.

Chapter 6 SeCurity

283

 ➄ Ensures that we only allow SSL if there is a verified client-side

certificate.

Now this leads to two questions:

 1. Where do we place the files for the docker container to pick up?

 2. How do we tell docker to update the emqtt.conf file with those

properties listed in Listing 6-17?

The first is relatively easy; we can use the -v tag in docker to allow a local directory

be used as mounted directory in the docker image we are running. The second requires

us to use a naming convention used by the image to convert environmental variables to

updates to the properties file.

When updating a reference like listener.ssl.external.keyfile, it is converted

as an environmental variable starting with EMQ_, then uppercasing the entire string and

replacing all the “.” with double underscores. Thus, we would have EMQ_LISTENER</

emphasis>SSLEXTERNALKEYFILE from the example. This can be used for any of the

properties in the EMQTT that you want to adjust. In Listing 6-18, we have our docker

create for the emqtt-auth with the necessary environmental variable settings to run our

secure EMQTT server.

Listing 6-18. Docker run to create an EMQTT server with SSL enabled and verify

SSL turned on

docker run --restart=always -ti --name emqtt-auth --net=iot \

-p 8883:8883 -p 18083:18083 -p 8083:8083 -p 8443:8443 -p 8084:8084 -p

8080:8080 \ ①
-v ~/book_certs:/etc/ssl/certs/ \ ②
-e EMQ_LISTENER__SSL__EXTERNAL__KEYFILE="\/etc\/ssl\/certs\/EmqttIot.key" \ ③
-e EMQ_LISTENER__SSL__EXTERNAL__CERTFILE="\/etc\/ssl\/certs\/EmqttIot.pem" \

-e EMQ_LISTENER__SSL__EXTERNAL__CACERTFILE="\/etc\/ssl\/certs\/

RustIOTRootCA.pem" \

-e EMQ_LISTENER__SSL__EXTERNAL__VERIFY=verify_peer \

-e EMQ_LISTENER__SSL__EXTERNAL__FAIL_IF_NO_PEER_CERT=true \

-e "EMQ_LOG_LEVEL=debug" \

-e "EMQ_ADMIN_PASSWORD=your_password" \

-d devrealm/emqtt

Chapter 6 SeCurity

284

 ➀ Added the 8883 SSL port and removed the 1883 TCP port from being

exposed since we no longer want users to connect via TCP.

 ➁ Our local ~/book_certs directory can be mounted to the docker

images /etc/ssl/cert.

 ➂ Referencing the directories with escaping the files.

We have our server up and running; it’s good to test to make sure it’s working as

designed. And the way we are going to test to see if it works is if it gives us a correct error

back. In Listing 6-19, we attempt to subscribe with just the RootCA.

Listing 6-19. Attempt to subscribe with the RootCA file

➔ mosquitto_sub -t health/+ -h localhost -p 8883 -d --cafile ./

RustIOTRootCA.pem --insecure

Client mosq/rL5I4rEQ73Brv2ITSx sending CONNECT

OpenSSL Error: error:14094410:SSL routines:ssl3_read_bytes:sslv3 alert

handshake failure

Error: A TLS error occurred.

The error we get is sslv3 alert handshake failure; if you receive any other error

particularly certificate verify failed, that means you set up the installation of the

certificate incorrectly. But let’s now get the client certificates created. This is because

while our server is set up to handle certificates, our client does not have them set up yet.

 Creating Client Certificates

Our final step is creating the client certificate; in the future, we will need to be able to

create a client certificate for each client. And in our case, each client is the Raspberry

Pi devices. Since these are connected devices and we want an ability to control

subscriptions, we will make it, so the clients only last for one month at a time. This way,

we can control a bit better how long the server device is able to access the server. And

in theory if we were doing a monthly billing, if they stopped paying well, they wouldn’t

have access after that month.

Chapter 6 SeCurity

285

But that will be done programmatically; for now, we are going to do this via the

command line like the other certificates. Since this is a bit of a repeat of before, we are

going to combine all three steps into one listing. Like before, we will create a private key,

create a CSR from that private key, and then using the Root CA create the certificate for

the client. In Listing 6-20, we have those steps.

Listing 6-20. Create the client certificate from the Root CA

➔ openssl genrsa -out PiDevice.key 2048 ①
Generating RSA private key, 2048 bit long modulus

..+++

.........+++

e is 65537 (0x10001)

➔ openssl req -new -key ./PiDevice.key -out PiDevice.csr ②
...

Country Name (2 letter code) []:US

State or Province Name (full name) []:CA

Locality Name (eg, city) []:SF

Organization Name (eg, company) []:Apress

Organizational Unit Name (eg, section) []:IoT

Common Name (eg, fully qualified host name) []:localhost

Email Address []:

Please enter the following 'extra' attributes

to be sent with your certificate request

A challenge password []:

➔ openssl x509 -req -in ./PiDevice.csr -CA RustIOTRootCA.pem -CAkey

RustIOTRootCA.key -CAcreateserial -out PiDevice.pem -days 3650 -sha256 ③
Signature ok

subject=/C=US/ST=CA/L=San Mateo/O=Apress/OU=IoT/CN=localhost

Getting CA Private Key

Chapter 6 SeCurity

286

 ➀ Creates the private key for the client.

 ➁ Creates the CSR for the private key.

 ➂ Creates the client PEM using the private key created and the Root CA

file that was created in the server section.

Pick a slightly different subject than for your clients vs. the Root Certificate. Having

the same between the client and the Root will cause issues. Of course, that said, the

issuer does need to match. You can double-check the settings for the certs you created

with the command openssl x509 -in <filename> -subject -issuer -noout. This

will give you the subject and the issuer. The issuer should all match across certs with the

clients having different subjects.

Now that we have created the certificates, let’s try to create a connection. In Listing 6-21,

we create a connection using the new client certificate we created.

Listing 6-21. Running a mosquitto subscription with the new client certificate

 ➔ mosquitto_sub -t health/+ -h localhost -p 8883 -d --key PiDevice.key --cert

PiDevice.pem --cafile RustIOTRootCA.pem --insecure

Client mosq/nHh8mJ922PEe6VeUSN sending CONNECT

Client mosq/nHh8mJ922PEe6VeUSN received CONNACK (0)

Client mosq/nHh8mJ922PEe6VeUSN sending SUBSCRIBE (Mid: 1, Topic: health/+,

QoS: 0, Options: 0x00)

Client mosq/nHh8mJ922PEe6VeUSN received SUBACK

Subscribed (mid: 1): 0

Now we have a secure connection to test against and with; however, now we are

going to have to update our actual code to switch from using a TCP connection to the

SSL connection.

 Creating Our New Message Queue Service
We have our MQ running SSL, and slightly more secured by requiring a client key to be

used, and shut down the TCP access; the MQTT service we created in previous chapters

will no longer work. At this point, the message queue will refuse any connections. We

are going to have to convert our connection_method for the message queue to use SSL

instead of TCP.

Chapter 6 SeCurity

287

Luckily, this is relatively simple. Let’s start by defining what extra items we need:

 1. Root CA – The root CA to the site that we created; this is the public

certificate.

 2. Client cert – The client certificate that is generated from the

public/private Root CA.

 3. Client key – The private key for that certificate.

You can either use the PiDevice certificate we created previously or create a new

certificate to use for the MQ service. I am not going to step through all the code, but

wanted to highlight two areas. The first is we need to add to our config a few more

references; in Listing 6-22, we added the preceding certs to the MqttClientConfig.

Listing 6-22. Updating the MqttClientConfig; this will be in the file src/mqtt/

mod.rs

#[derive(Debug, Clone)]

pub struct MqttClientConfig {

 pub ca_crt: String,

 pub server_crt: String,

 pub server_key: String,

 pub mqtt_server: String,

 pub mqtt_port: u16,

 // for the RPC

 pub rpc_server: Option<String>,

 pub rpc_port: Option<u16>,

}

Now we need to apply those certificates to the client; before we were using a TCP

connection method that didn’t require any extra configurations. In Listing 6-23, we alter

that to be a TlS connection using the certs provided.

Listing 6-23. Updating; this will be in the file src/mqtt/client.rs

pub fn create_client(config: &MqttClientConfig, name: &str)

 -> (MqttClient, Receiver<Notification>) {

 let ca = read(config.ca_crt.as_str());

Chapter 6 SeCurity

288

 let server_crt = read(config.server_crt.as_str());

 let server_key = read(config.server_key.as_str());

 create_client_conn(config, ca, server_crt, server_key, name)

}

And that is it; start up the application, and you can use the test calls we created

earlier to send the files to the MQTT and read them over TLS. We now have our message

queue system communicating over secure channels instead of insecure ones.

 Summary
In this chapter, we covered the very basics of security. I felt authentication was critical

since it drives about any Internet-based application. The integration in our layers

is less than we probably should do, but good enough for demonstration purposes.

You will want to add more as you continue. Same goes for MQTT, certificate-based

authentication is very common even for the most basic of items. Remember, with your

IoT device, when you first plug it in, you will want it to communicate with a server even

without the person being authenticated. This could be to know if it’s active, if an update

is required, and so on. We will do more callbacks to the authentication layer in Chapter 9

when we allow the user to authenticate with device flow on the Raspberry Pi.

Chapter 6 SeCurity

289
© Joseph Faisal Nusairat 2020
J. F. Nusairat, Rust for the IoT, https://doi.org/10.1007/978-1-4842-5860-6_7

CHAPTER 7

Deployment
The first half of this book is designed to focus on the cloud side of IoT development,

while in the second half, we will focus on coding against the device itself that interacts

with the backend. However, for this to properly work, we need to get the application

off our personal computer and into the cloud and, even more importantly, into the

cloud securely. The cloud is obviously the end goal for any application, but for an IoT

application, it becomes critical to be scalable; last thing you want is a customer to buy

an expensive device and have it not work well. In addition, it needs to be cost-effective.

While oftentimes we have subscriptions, many times you make the money on the device

and then lose money in the cloud. Netflix in particular spends excessive cycles making

sure the amount that is downloaded is not only compressed, only what you need, but it

can be done without causing their cloud deployment to be too costly. Why lose money

where you don’t have to?

For this chapter, we are going to go over how to deploy our application to the

cloud and perform this in the best and most reproducible manner. What do I mean by

reproducible? Simply put, I am not sure what cloud service you plan to deploy to or if

plan to deploy to your own infrastructure. We are going to use Docker and Kubernetes to

make easily reproducible deployments with helm charts and then finish it off with using

gitlab-ci to deploy the application.

 What to Deploy
We have developed all the microservices we are going to use for this book and finished

configuring them to handle our needs for our device. In addition, we made use of

numerous data services. These will all need to be deployed and used in the cloud

in order to have our application working. For our solution and for yours, we should

do a combined approach. We will deploy all the applications of course, but the data

services we will do a combination of using cloud services and deploying our own

versions (we will get to this in a bit).

https://doi.org/10.1007/978-1-4842-5860-6_7#DOI

290

 Microservices
Let’s start with the microservices; we created four of them for our backend application,

and each will need to be deployed into our cloud. The microservices we have are as

follows:

• http retrieval service

• rpc retrieval service

• mqtt service

• upload service

All of these microservices need to be deployed and scaled correctly in order to

provide an optimal end-user experience.

 Data Services
The data services consist of all the data store interactions and the pub sub that our

application uses. These services are not services we created but based on images we

used and customized the settings for. Because of this, we have a few options how we use

these services in the cloud. Many of the services, like the database, are often provided by

cloud providers. The plus to using the cloud provider once is often guaranteed reliability,

automatic scalability, and automated data backups. For many data stores, the added cost

is worth the less headache.

Of course, the other way is to simply deploy and manage yourself. The benefit

with this is the extra level of control you have in configuring and using your services.

Oftentimes, it’s not a 100% either/or to use. Let’s recall the three data services that we

used in our application thus far:

• Event Store

• PostgreSQL database

• eMQTT

The EventStore is a bit unique and not available in all cloud providers, so

we will have to deploy that ourselves. With the PubSub, there are many different

implementations that can be used and are often provided by cloud providers others

out of the box since a PubSub is critical for any IoT solution. For our solution, we are

Chapter 7 Deployment

291

going to use our own PubSub though because I prefer the optimization that comes with

eMQTT. The Erlang MQTT is highly scalable and superior broker that will be able to

handle higher levels of traffic. That leaves the Postgres database, and this we will use the

cloud provider. The extra cost will be worth the extra reliability. And besides, we need to

see how it works both ways.

 How to Deploy
There are many ways to deploy services to the cloud and many services you can pick

from. The traditional methodology is to buy a service instance and create the Linux

environment (or make use of one that is existing) and deploy the application directly to

there. Or you can simply set up your own server in a data center and set up and maintain

the application and deploy directly. This is the way almost everyone did 2 decades

ago, and cost quite a bit in maintenance and use. Today, this is still used at very large

companies, but even that is shrinking. Many large companies also have a cloud solution

using one of the big providers.

The big providers are Amazon Web Services (AWS), Google Cloud Platform (GCP),

and Microsoft Azure. If you’ve done any cloud development, you’ve probably heard of

all three. There are also providers like Aliyum in China. These providers are great; they

have data centers all over the world and have high uptime reliability, and most have

great options for service and support. These are great if you are a large-scale, or even

small-scale, startup. But they are EXPENSIVE. If you are designing an app for hobby or

prototype or for a book and don’t want to spend hundreds or thousands a month, then

there are other options.

There are smaller companies that provide cloud services to users and companies

that are more apropos to be used for hobbyists or very small companies. eApps and

DigitalOcean are two good examples that will let you deploy to the cloud, run your

application, and not break the bank. For that reason, we will use DigitalOcean, and I will

step through setting up the account and creating it later.

 Deployment Options
We discussed earlier the options to deploy a service directly to the cloud with managed

systems; however, this is becoming more of an archaic way of deploying. The alternative

that is becoming popular is to use Kubernetes or any type of orchestrated container system.

Chapter 7 Deployment

292

This allows a configuration-based description for our cloud architecture. In addition, we

will be able to use these tools to easily reproduce deployments to any cloud or even local.

 Goals
The overarching goal for us at the end of this chapter is to have everything deployed to

the cloud. This is quite a large goal and hence a long chapter, and many of the topics we

are going to talk about in this book like Docker and Kubernetes have entire books written

on. We will be scratching the surface to satisfy our needs, but I will try to cover enough

for novices to understand what is going on.

After completing this chapter, the following details should be finished:

 1. Creating Docker images for each of our microservices

 2. Creating Kubernetes YAML files for deploying our application

 3. Creating Helm scripts for our Kubernetes deployments to be able

to configure per environment

 4. Configuring a CI/CD pipeline to deploy the entire backend

 Docker
If you’ve worked with backend applications over the last few years, you’ve probably used

or at least heard of docker. Docker is a platform-as-a-service (PaaS) product that uses

operating system virtualization to create containers that contain the OS virtualization

and any other artifacts that we need. Docker first debuted at PyCon in 2013 and was

released shortly thereafter. What does this all mean? Why do we need all this? Let’s go

back in time to what life is like before and if you don’t use docker.

One of the common denominators between docker and dockerless deployments is

the use of artifacts. No matter how you deploy your code with Rust, we will always be

creating releases; with languages like Java, it’s a jar or war file. You create the artifact

on a build server and can push it through the process of testing on a dev and qa and

eventually push the artifact to production. By the time we get to production, we assume

it should work because we tested the exact code on each system. However, this was

not always the case; far too often, it failed and you had to figure out why. What was

the reason if the artifacts were identical? The culprit was often the virtual machines

(since rarely do we deploy to one specific full server). There could have been a different

Chapter 7 Deployment

293

server settings, extra software installed, or even a totally different version of the virtual

machine. You simply didn’t always know. This is what containerization tries to solve.

Containers allow you to keep the same virtualized environment whether you are testing

locally, in test, or in production. In Figure 7-1, we illustrate how this looks.

Figure 7-1. Diagram comparing virtual machine vs. Docker artifacts

Chapter 7 Deployment

294

Not only does having container allow you to self-manage your dev to test rollouts,

but they also have a way to reproduce and allow the virtual machine to be exactly what

you want to contain and nothing more.

 What Is Containerization
Containers started as a way of using the Linux container to successfully package images

and deploying them to Linux for execution. This was in the start of the Docker world in

2013; since then the docker has spread with partnerships to other systems like Windows.

Containers at their core allow an abstraction layer that can run an operating system and

multiple applications all on one “server”. We often compare them to virtual machines

because that is what they most often replaced, and virtual machines in their turn

replaced full machines.

 Full Machines

By full machines, I mean one rack or server in a data center and that the hardware

is 100% dedicated to the application we are writing, most often in a data center and

sometimes in someone’s house or by a desk. Twenty or so years ago, you would have

one server, running one operating system, and then multiple applications could be

run off that one system. However, that prevents any sandboxing between applications.

They have access to the same system files and same system configurations and allowed

little ability to customize system settings for your own application. In addition, your

code was co-located with others on the same filesystem which could result in security

issues if you weren’t careful. While this was not a big issue if you all worked at the same

company, if you were a server farm selling services, this was very big. Figure 7-2 reflects

this structure.

Chapter 7 Deployment

295

 Virtual Machines

The way this first problem was solved was with virtual machines. You have a virtual

machine installed right now on your system if you are using Docker in fact. I know this

sounds a bit confusing since we said docker replaces the need for virtual machines,

but we’ll get into that in a second. If you are a Mac user for the past 10+ years, at some

point you may have had a VM running Windows OS on your computer via something

like VMware. Virtual machines work by using a common set of infrastructure (your CPU,

hard drive, RAM, etc.) and putting a virtual machine monitor on top of it. The virtual

machine monitor, often called a hypervisor, creates and runs virtual machines. The

virtual machines have their own OS and their own hard drive partition and get access to

specific amount of shared ram and shared cpu. You can then put whatever applications

you want inside the VMs. These are truly sandboxed environment like we have in

Figure 7-3. And they worked well for years.

Figure 7-2. Diagram of our original application deployments

Chapter 7 Deployment

296

The problem with these is similar to the full machines; while you can at least

segregate multiple applications and teams across a physical server, within the virtual

machine all your resources are shared. On your same VM, your applications would still

have access to the same file systems, and an application could start processes that would

hog all the resources (ram, disk space, cpu). In addition, you still have to do manual

updates of the OS and keep up to date with the software patches. In addition, since it is

a VM, you will have to install libraries that support all the applications. That means one

application could install libraries that the other applications don’t need. And now, if that

library has a security vulnerability, all the applications are now vulnerable instead of

just the one. Virtual machines helped us solve the problem, especially on an enterprise

scale, of segregating our teams or even projects on one server but still left us all the

vulnerability at an application level.

Figure 7-3. Diagram of our virtual machine architecture

Chapter 7 Deployment

297

 Containers

That brings us to containers. Containers all use the same OS kernel and infrastructure

on a machine. However, instead of a hypervisor, there is a containerization manager that

actually runs the containers; for us, this will be docker. Docker allows us to configure our

containers and the amount of operating system infrastructure each container is able to

make use of. This allows us to have small, fast, compact applications and more of them

than we would in a traditional virtual machine environment.

Figure 7-4. Diagram of our docker architecture

You will notice in Figure 7-4 I have an Ubuntu and Linux symbol by next to a few of

the applications. Each of the containers can contain a base OS image that builds up on

the system kernel. This allows your application to run with its own operating system

dependencies, depending on what your applications need. This is for your standard

features like your bash, what kind of scp, and so on. Lower-level kernel specifics like

memory management, the file system, and networking are still run by the kernel and

Chapter 7 Deployment

298

would be hard to divorce from. Because of this, remember, if you require a specific

chipset architecture or using features of a specific kernel, you have to target it to the

underlying machine that docker is running and the orchestrator is running from. If you

notice, two of the applications I didn’t attach any OS to, and these are called scratch

containers, meaning they contain no extra parts except from what is inherited from the

kernel. We will get into how we use both later.

The use of VMs and containers are not mutually exclusive. When you purchase an

account from GCP, AWS, DigitalOcean, or any number of companies out there, you

are not purchasing an entire machine; that would be very cost prohibitive for most

individuals and small companies. You are still purchasing a machine, with virtual

machines, except the app we will put on there is a container orchestrator that will allow

us to run docker with multiple applications. In addition, each container can define

the amount of ram and cpu and assign disk space to each so that you can prevent one

application from hogging all the resources. Another huge benefit is the containers are

self-contained images that include the OS information and the application code; this

makes it very easy and fast to spin up more containers if you ever need to for load,

region, or even testing purposes. This structure gives us flexibility in our deployment and

our applications all without breaking the bank.

A typical deployed diagram of multiple VMs on a full machine is in Figure 7-5.

I feel remiss if I did not include a counter point to all of this. Remember, every time

you add a layer, you add resource use of that layer. That an application sitting on docker,

on a VM, and on a full machine will obviously have access to the same amount of CPU,

RAM, and disk space as one running on a full machine. Some people prefer deploying to

just a VM directly because of this, especially if it’s just one or a few applications they have

100% control over.

Chapter 7 Deployment

299

I am sure in 10 years we will still have docker, but we will also have other options that

will gain traction. Server-side application development has been since it started a rapidly

changing system to adjust in terms of optimization, security, and cost. And that’s what

these container and sandbox environments help do; they lower the cost with tighter

security and great performance.

Figure 7-5. Diagram of a deployment to a machine with multiple VMs and
containers

Chapter 7 Deployment

300

 Docker Layers

While part of the power of docker comes in the fact you don’t need independent virtual

machine per service, the other is in its concept of layers. Take the previous figures; we

showed that each docker container can contain an underlying OS. In fact, each docker

container can contain a number of items, and often when writing microservices, your

containers will all contain common parts. They could be getting the same certificates or

anything custom. These layers take the form of images that you can create on your own

or can be pulled from a repository at docker.com or your own repository. Gitlab, Google,

and so on all have private image repositories you can make use of.

While the images on public repositories, especially the certified ones, are fairly safe

if you have the resources, I suggest maintaining your own repository of base images

built from the source code of the images (and vetted), so as to be sure an image is never

changed out from underneath you without your knowledge. Since they are public

images, someone could potentially push unknowingly or knowingly a malicious exploit.

In general, you will only be customizing your base images by the language and type

of application (Web, batch, backend, etc.). And you can have the images vetted by a

security or SRE team first. I’ve also seen images changed and pushed with the same

version number; thus, the image essentially changes without you aware at all.

Your layers could be as simple as an Ubuntu OS or a stripped down Ubuntu OS. Most

often though, we have layers for the applications we are creating that include the OS

as well as all the tools needed to compile and run the application. For example, rust-

lang maintains multiple docker images with various base images from slim to using the

buildpack-deps (contains various build dependencies).

Let’s take a look at what one of these looks like. In Listing 7-1, I have the dockerfile to

create the debian image with rust for the rust:1.37 image.

Listing 7-1. The Dockerfile for rust::1.37.0 (I have abbreviated the SHA’s for the

book)

FROM buildpack-deps:buster ①

ENV RUSTUP_HOME=/usr/local/rustup \ ②
 CARGO_HOME=/usr/local/cargo \

 PATH=/usr/local/cargo/bin:$PATH \

 RUST_VERSION=1.37.0

Chapter 7 Deployment

301

RUN set -eux; \

 dpkgArch="$(dpkg --print-architecture)"; \

 case "${dpkgArch##*-}" in \

 amd64) rustArch='x86_64-unknown-linux-gnu'; rustupSha256='a46fe...

c9076' ;; \

 armhf) rustArch='armv7-unknown-linux-gnueabihf';

rustupSha256='6af5a...caea1' ;; \

 arm64) rustArch='aarch64-unknown-linux-gnu';

rustupSha256='51862...77a1b' ;; \

 i386) rustArch='i686-unknown-linux-gnu';

rustupSha256='91456c...182be' ;; \

 *) echo >&2 "unsupported architecture: ${dpkgArch}"; exit 1 ;; \

 esac; \

 url="https://static.rust-lang.org/rustup/archive/1.18.3/${rustArch}/

rustup-init"; \ ③
 wget "$url"; \

 echo "${rustupSha256} *rustup-init" | sha256sum -c -; \

 chmod +x rustup-init; \

 ./rustup-init -y --no-modify-path --default-toolchain $RUST_VERSION; \ ④
 rm rustup-init; \

 chmod -R a+w $RUSTUP_HOME $CARGO_HOME; \

 rustup --version; \

 cargo --version; \

 rustc --version;

 ➀ The base image for this dockerfile.

 ➁ Sets environmental variables we need for rust including rustup and

cargo which we use for building rust applications.

 ➂ Sets the URL for the rust lang and retrieves the archive of the rust

language and tool chain.

 ➃ Initializes rustup which will allow us to run or create releases with

cargo.

Chapter 7 Deployment

302

This is not a small image; the size is 1.66 GB which is why we want to use layering, so

that every time we have a rust build, its total file size isn’t our rust code + 1.66 GB. The

beauty about the layering of docker images is that we only need to download the image

once on our filesystem to reuse it across multiple applications. There are a variety of

images you can choose from when building any application, let alone a rust application.

In fact, you could start with a standard debian image and build your own image to

compile. Often images follow similar naming formats; the one you will often see uses the

slim suffix, for example, rust:1.37-slim. The slims contain the most basic needed for

the operating system so everything you will normally need but nothing else. For rust in

order to use it, you need a C++ compiler as well as a few other binaries. The slim version

of the preceding rust architecture would get a slim debian instance and add in the

binaries we need. In Listing 7-2, we have the beginning rust:1.37-slim image.

Listing 7-2. The Dockerfile for rust::1.37.0-slim

FROM debian:stretch-slim ①

ENV RUSTUP_HOME=/usr/local/rustup \

 CARGO_HOME=/usr/local/cargo \

 PATH=/usr/local/cargo/bin:$PATH \

 RUST_VERSION=1.37.0

RUN set -eux; \

 apt-get update; \

 apt-get install -y --no-install-recommends \ ②
 ca-certificates \

 gcc \

 libc6-dev \

 wget \

 ; \

... the rest of the rust architecture retrieval

 ➀ Using the debian slim package.

 ➁ Installing the binary packages needed for Rust.

The resulting image now becomes 1.06 GB, saving us about half a gigabyte in space

and leaving less routes for potential exploits when deployed. Oftentimes, you will

start with the big image when creating your own dockerfile and work your way down.

Chapter 7 Deployment

303

You’ve noticed a few commands in the dockerfile are already the RUN and ENV; we won’t

dive into all the commands, but there are a few more you should know and also what’s

going on whenever you run a keyword (if you noticed on a few of those RUNs they did

the && to combine it into one, this wasn’t just to write clean scripts).

At each command, we have a different image being created that can be stacked

upon; this helps us when using caching to detect if anything is changed. In the preceding

listing, you notice they actually ran what’s normally a few Linux commands in one RUN

statement; the reason for this is to keep it from creating a separate image for each line.

This way at the end of the RUN, you have all the extra libraries needed to build your rust

application. Now this doesn’t mean you want only one RUN command in your dockerfile,

but just group them logically. Here are a few more commands we will use:

• COPY – This command copies from the local directory its run form

into the docker container. This is how you get your code into docker

to begin with.

• RUN – As we’ve seen before, this runs a command inside container.

• WORKDIR – This is used to set what directory the commands should

be run from.

• ENTRYPOINT – This sets the directory you want to execute the

command from.

• CMD – This is the command to execute when running docker run on

your container.

We have already used the docker run throughout the book to run applications

earlier in the book like emqtt, postgres, and so on. This will be how we execute our rust

microservices for local docker testing.

 Creating Our Own Containers

The previous was to give you a bit of an understanding of how Docker works and what

we are trying to accomplish using layering of images. We will have three microservices

that we will have to add docker images for. Before we do that, let’s see the basics of

implementing the base images we mentioned earlier. To test this, we are going to use a

basic hello world application, literally what is created when we type cargo new basic, to

create and test a basic hello world.

Chapter 7 Deployment

304

We know how to build an application using cargo build; however, that just compiles

the application and then requires cargo run after. This is not what you’d want to do in a

production environment. In fact, in a production environment, we’d want to also remove

all the source code after, so that in case your containers were to get compromised,

hackers would haven’t access to the source. Cargo provides an added flag that allows us

to compile all the applications down to one file, a release file. The flag is --release; in

Listing 7-3, we use the --release flag to build our basic application.

Listing 7-3. The output from building with cargo build --release

➜ cargo build --release

 Compiling basic v0.1.0 (/Users/joseph/Library/Mobile Documents/

com~apple~CloudDocs/work/rust-iot/code/ch07/basic)

 Finished release [optimized] target(s) in 9.57s

➜ ls -al target/release/basic

-rwxr-xr-x 2 joseph staff 273360 Sep 2 15:10 target/release/basic

Here we have a release we can run and create. So let’s use what we’ve learned to

create our first dockerfile. In Listing 7-4, we have our first release that we build this

small example application. We execute this code with docker build -t basic_run -f

Dockerfile.run . where Dockerfile.run is the name of that dockerfile.

Listing 7-4. Dockerfile that builds a basic rust application that is executable

docker build -t basic_run -f Dockerfile.run . ①

FROM rust:1.37.0-slim ②

COPY ./ ./ ③

RUN cargo build --release ④

RUN rm -rf src ⑤

CMD ["./target/release/basic"]

 ➀ Use the slim down rust image as a base image that will allow us to

compile rust.

 ➁ Copy our local code into the container.

Chapter 7 Deployment

305

 ➂ Build a release for the container.

 ➃ Remove the source code from the image.

 ➄ Execute the release when running docker run.

This is a pretty straightforward set of commands; to get a better understanding, let’s

look at the output from running this in Listing 7-5 and walk through it a bit.

Listing 7-5. Executing the build for the dockerfile

➜ docker build -t basic_run -f Dockerfile.run .

Sending build context to Docker daemon 8.704kB ①
Step 1/5 : FROM rust:1.37.0-slim

1.37.0-slim: Pulling from library/rust ②
1ab2bdfe9778: Pull complete

c4720cf120d0: Pull complete

Digest: sha256:6033d46860ec7793dabf22dde84ef84692f233e25c2e11e67aca39e7d88b3e03

Status: Downloaded newer image for rust:1.37.0-slim

 ---> 17110364e319

Step 2/5 : COPY ./ ./

 ---> 6e0fdec3bf73

Step 3/5 : RUN cargo build --release

 ---> Running in c3c3d608b02e

 Compiling basic v0.1.0 (/) ③
 Finished release [optimized] target(s) in 1.38s

Removing intermediate container c3c3d608b02e

 ---> 66cc36d9ebbd

Step 4/5 : RUN rm -rf src

 ---> Running in 564723612b30

Removing intermediate container 564723612b30

 ---> d909b7de775d

Step 5/5 : CMD ["./target/release/basic"]

 ---> Running in 693c925a57ba

Removing intermediate container 693c925a57ba

 ---> 4a1e0f6396b0

Successfully built 4a1e0f6396b0

Successfully tagged basic_run:latest

Chapter 7 Deployment

306

 ➀ Sends the dockerfile to the docker daemon for parsing and

processing.

 ➁ Since this is our first time using the rust:1.37.0-slim, it pulls the

library from docker hub.

 ➂ You will see the output of each step for this is the output you see

when we build a release file.

You will also notice at each level there is an image tag; like we discussed, each

step creates another layer that can be built up on. This creates a final container of

size 1.05 GB. We can also view each of the history of the image with docker history

<image>.

Scratch Containers

For me this 1.05 GB file is still a bit too big, even for a slim, plus it contains many items

we simply don’t need to run it. Since this built a rust executable, we not only don’t need

the source code, we also don’t need the rustup or anything else associated with it. Also

we were running commands like rm -rf, in order to use those it requires a shell. For

production, all we really want is an executable against the underlying kernel. For that, we

introduce two notions:

• Multi-stage builds

• Scratch containers

The first, multi-stage builds, allows us to have multiple stages of builds inside one

dockerfile, and each stage can access the previous if need be, but the artifacts and any

files copied aren’t by default in the following stages. This allows you to create a separate

container to have whatever you need in it to run the application executable.

The second part, scratch containers, are blank containers. We mentioned them a

bit earlier; they have no underlying OS; they simply are whatever you decide to copy

in there. Let’s take those two concepts and redesign our Dockerfile; we have that in

Listing 7-6.

Chapter 7 Deployment

307

Listing 7-6. Dockerfile that builds the application and then copies it to the

scratch container

docker build -t basic_scratch -f Dockerfile.scratch . ①

FROM rust:1.37.0-slim as build

COPY ./ ./

RUN cargo build --release

FROM scratch as release ②

COPY --from=build /target/release/basic .

CMD ["/basic"]

 ➀ The from looks similar but with the addition of as build, which

names the stage of the build.

 ➁ Uses the --from to specify the container we are referencing to copy

files from it.

This has about everything we had in our first as far as command goes. The difference

is though it builds us a final container that we can run and deploy that only contains the

basic release file. Because of this, the final image is only 2.47 MB big. Going from 1 GB

to roughly 2.5 MB is an exponential size decrease and is amazing. However, there is one

minor gotcha; let’s now try to run the application created; in Listing 7-7, we have the

output.

Listing 7-7. Running the from scratch container dockerfile

➜ docker run basic

standard_init_linux.go:211: exec user process caused "no such file or directory"

This obviously is not the output we desired. The problem is while you don’t need

rustup or cargo or anything like that to run a release build of a rust application, that

doesn’t mean you don’t need anything. There are C libraries that are required to run

and execute rust applications that are installed on most Linux systems, but on a scratch

container, they aren’t there.

Chapter 7 Deployment

308

MUSL

This is solved with using musl. Musl was designed as a standard library to be a static

linking library specifically to work on Linux kernels. We can turn the static linking on

for our build; we then compile our application but targeting a specific system, in this

case, x86_64-unknown-linux-musl. When targeted with this system, it will add the

musl libraries and compile to target a barebones container. Luckily for us, someone

has already created a container that adds in all the musl dependencies and the default

target, so all we have to do is change our first FROM and the copy since the release will be

compiled to a different location for the musl target. In Listing 7-8, we have our modified

from scratch dockerfile.

Listing 7-8. Dockerfile that builds the application and then copies it to the

scratch container, that works

docker build -t basic_scratch2 -f Dockerfile.scratch2 . ①

FROM ekidd/rust-musl-builder:1.34.2 as build

COPY ./ ./

RUN cargo build --release

FROM scratch as release ②

COPY --from=build /home/rust/src/target/x86_64-unknown-linux-musl/release/

basic .

CMD ["/basic"]

 ➀ We changed to using a different rust image, one that has the musl

libraries.

 ➁ Modify the target copy from the musl target directory.

The resulting image is only 1.93 MB big, and this one actually executes.

Ignoring Files

Last item on the docket for docker, I want to introduce you to one final file, the

.dockerignore. This is actually a somewhat critical file to use. If you recall when we copy

the source code over, we were copying over everything in the directory. This includes

the .git subdirectories, and our other IntelliJ or other files, but also contains our target

Chapter 7 Deployment

309

directory which locally can be quite big and even deployed if you are running tests first

before creating a container will be big. That’s where .dockerignore comes into play,

allowing us to ignore files for the COPY process, creating a smaller intermediary image

and performing faster. In Listing 7-9, I have the .dockerignore we are using for the basic

application and our other examples. You can copy and modify it as you need.

Listing 7-9. The .dockerignore file for our application

./.gitignore

.git

Dockerfile

README.md

.idea

target

*.iml

This was a broad overview of Docker; if you want to learn more, there are many

docker books available by Apress, but this should give you the basics to understand the

next steps we are taking to build images for our actual application.

 Using Docker in Our Applications
Let’s circle back to our applications; we have three applications that we need to create

docker files for. Each application will have to create a docker image that we can run,

deploy to, and test against. We will automate this later in the chapter. But to start, we will

create three Dockerfiles:

 1. Upload service

 2. MQTT service

 3. Retrieval service

Each of these is slightly unique in its own right; we’ve covered the basics so far, so

let’s start coding them.

Chapter 7 Deployment

310

 Upload Service

We’ll start with the upload service; this will be straight out of the playbook we went over

just now. In Listing 7-10, we have our dockerfile to create the upload_svc.

Listing 7-10. The Dockerfile for the upload_svc

#FROM rust:1.34.0 as build

FROM ekidd/rust-musl-builder:1.34.2 as build

COPY ./ ./

Fix permissions on source code.

RUN sudo chown -R rust:rust /home/rust

#RUN cargo build --target x86_64-unknown-linux-musl --release

RUN cargo build --release

FROM scratch

COPY --from=build /home/rust/src/target/x86_64-unknown-linux-musl/release/

upload_svc .

EXPOSE 3001

CMD ["/upload_svc"]

As you can see, this creates the dockerfile and creates a runnable upload_svc.

The EXPOSE here doesn’t actually do anything; it serves more as documentation to

tell a user which port they can connect to.

If you recall from previous chapters, we had used clap args crate to set arguments on

our application. We used quite a few defaults when creating it before, but now we start to

use one to run the application. In particular, we will be updating the RETRIEVAL_URL to

point to our retrieval service we will be deploying in the network. In Listing 7-11, we have

the run command to test that our application works.

Listing 7-11. Docker run for upload_svc

docker run -p 3000:3000 \

 -e RETRIEVAL_URL="http://localhost:3001" \

 --name up_svc --net=iot -d local/upload_svc

Chapter 7 Deployment

311

 MQTT Service

Next is the MQTT service; for this, we are going to initially set it up much like we did the

previous, but there are two big differences:

 1. Cap’n Proto

 2. SSL certificates

If you recall from Chapter 5, when using Cap’n Proto, we were required to install the

capnproto C++ libraries as well. This was needed to create and compile our Cap’n Proto

schema files, so we will need to add this binary and compile it for our application. Also

because we are using SSL certificates for our MQTT communication, we are going to

bring in a slightly different musl; this one will have OpenSSL with it. In Listing 7-12, we

have the docker build with Cap’n Proto.

Listing 7-12. The Dockerfile for the mqtt_service

MUSL with OpenSSL ①

FROM ekidd/rust-musl-builder:1.34.2-openssl11 as build

Fix permissions on source code.

Also on where we are installing CAPNP

RUN sudo chown -R rust:rust /home/rust

need to instapp capnp

Install capnproto 0.6.1 ②

RUN echo "Intalling Cap'n Proto" && \

 cd /tmp && \

 CAPN_PROTO_VERSION=0.7.0 && \

 curl -O "https://capnproto.org/capnproto-c++-$CAPN_PROTO_VERSION.tar.gz" && \

 tar zxf "capnproto-c++-$CAPN_PROTO_VERSION.tar.gz" && \

 cd "capnproto-c++-$CAPN_PROTO_VERSION" && \

 ./configure && \

 make -j6 check && \

 sudo make install && \

 rm -r /tmp/*

Chapter 7 Deployment

312

add the source code for the build

COPY ./ ./

RUN cargo build --release

FROM scratch

COPY --from=build /home/rust/src/target/x86_64-unknown-linux-musl/release/

mqtt_service .

EXPOSE 8883

CMD ["/mqtt_service"]

 ➀ Using the rust-musl-builder with OpenSSL.

 ➁ Dynamically pulling the Cap’n Proto and building it in our system to

build.

Now we can run this passing in the MQ certs in Listing 7-13 to execute the MQTT

service.

Listing 7-13. Docker run for mqtt_svc

docker run -p 8883:8883 --name mq_svc --net=iot \

-v ~/book_certs:/etc/ssl/certs/ \

-e ROOT_CA="\/etc\/ssl\/certs\/RootIOTRootCA.pem" \

-e CLIENT_KEY="\/etc\/ssl\/certs\/PiDevice.key" \

-e CLIENT_CRT="\/etc\/ssl\/certs\/PiDevice.pem" \

-d mqtt_svc

 Retrieval Service

And finally in Listing 7-14, we have the retrieval service; this one is like the MQTT service

in that it uses Cap’n Proto, but the SSL need is on the database side, not the MQTT side.

Listing 7-14. The Dockerfile for the retrieval_svc

#FROM ekidd/rust-musl-builder:1.34.2 as build

#FROM clux/muslrust:1.34.2-stable as build

FROM clux/muslrust:stable as build

Chapter 7 Deployment

313

①
RUN apt-get update && apt-get install -y capnproto

COPY ./ ./

RUN cargo build --release

FROM scratch

COPY --from=build /volume/target/x86_64-unknown-linux-musl/release/retrieval_svc.

EXPOSE 3000

CMD ["/retrieval_svc"]

 ➀ Install the Cap’n Proto files needed for compiling with Cap’n Proto.

This time I used a slightly different dockerfile; the main reason was this seemed to

work better with the database, and since it was debian core, I could just do an apt-get

of the CapnProto. There is one code change though we had to do to make this work. The

diesel required us when using a musl system to bring in an OpenSSL crate. In order to

use it, you will have to add the crate openssl = "0.10.24" to your Cargo.toml as well

as add extern crate openssl; to the top of your main.rs. However, as you can see in

Listing 7-15, this will run the application well.

Listing 7-15. Docker run for retrieval service

-e DATABASE_URL="postgres://user:password@localhost:5432/rust-iot-db" \

 -e RETRIEVAL_URL="http://localhost:3000" \

 -d retrieval_svc

Now we have all our docker containers built, tagged, and ready for local use in a

Kubernetes system.

 Deploying with Kubernetes
Handling a few microservices at a time can be troublesome, but handling an entire

ecosystem at scale can be downright impossible, especially when you want to deploy to

multiple virtual machines in potentially multiple different cloud environments. When

you think globally different regions have better support even among the big tiers, the

virtual machine support and configuration offered can be different.. This can force you

Chapter 7 Deployment

314

having to create different deployment scripts depending on the regions and platforms

you are deploying to. You also may not want to create deployment scripts that lock you

into one particular cloud provider, making it much more expensive to switch providers.

And this was a problem Google had early on. The solution to this problem of having to

manage at scale led to the creation and use of Kubernetes, which is Greek for pilot or

helmsman, which also explains its symbol of a steering wheel.

A little history, Google had created a system called Borg to handle the scheduling

and launching of applications. After Docker, they decided to take the bits and pieces to

work with it and create a system that has become the de facto standard for deploying and

managing large-scale applications across companies. And in 2014 taking what Google

had learned from Borg and other systems, they released Kubernetes.

Microservices were not as ubiquitous when Kubernetes first started as they are

today, but in many ways, Kubernetes was ahead of its time in providing infrastructure

that supports it. Or maybe having such an easy method to deploy microservices leads to

more use of them.

 How Kubernetes Works
If you’ve never used Kubernetes before, I think it’s important that we at least take a

peek under the covers of how it works. Kubernetes provides container orchestration

along with a way to allow us to have a full-scale system with load balancers and scaling

without the need for knowing the custom types and code in different environments; it is

a formidable abstraction layer.

 Pods

How does it accomplish this? I like to start in reverse with these things. Our goal in the

end is to deploy applications to run. From the previous section, we are running our

applications in containers, so what we need is a system that can deploy and manage

our containers. We will store our docker containers in pods. A pod often contains one

container but can have any number of containers associated with it. For example, you

could have your container that runs your application, another that runs migration scripts

for the database, and yet another that upgrades traffic to https for any incoming and

outgoing requests. But in the end, all these containers are on one pod. They share the

same IP address and potentially filesystem. A pod looks like Figure 7-6.

Chapter 7 Deployment

315

In a pod, containers can be run sequentially or they can be run at the same time; we

will get into those options later. But it’s important to remember that while you can run

multiple containers in one pod, there is only one unique internally derived IP address

for each pod. This means that all containers local to a pod can talk to each other via

localhost. Also remember that while we are using docker containers as the container

mechanism, Kubernetes supports alternative containers although Docker is still the #1

used container for it. Pods are also given a unique ID. The purpose of the pod is to do

our work; many of the other features you will see support how we create them and the

routing of them.

It’s important to remember here that while a pod can run multiple containers, it’s

not designed to run multiple instances of the same container simultaneously for the

purpose of scale. In other words, we don’t use more containers in a pod to scale the

system, rather we use more containers to add more functionality. To scale horizontally,

we add more pods in the same configuration. These are defined by the amount of

replicas.

Pods can be long lasting or short lasting; while they are often available for

months or even a year, the nature of them is for them to not be durable. They need to

handle downtime, restarts, and destroys. In fact, you will rarely directly create a

pod either.

Figure 7-6. Diagram showing the pod architecture

Chapter 7 Deployment

316

 Nodes

Your pods themselves will live in a node with multiple pods all residing on one node.

The node is the actual physical or in most cases a virtual machine hardware that runs

part of your cluster. To scale horizontally, you add more nodes; to scale vertically, you

can add more memory and CPU to an existing node. In fact, later when we go to set up

a cloud service, we will choose the amount of nodes we want and the size. Most often in

large-scale applications, you will have multiple nodes which will contain any number

of pods on them. With pod sets that have multiple instances of the same pod, these may

all be on one node or spread out across nodes. Figure 7-7 shows the node along with the

pods inside of it.

Figure 7-7. Diagram showing the node architecture

Chapter 7 Deployment

317

A node is not just a dumping ground where pods are put; the node itself has to manage

the pods. There are a couple processes and applications that help in managing a pod:

 1. Kubelet – A background process that runs on the node that

manages the pod. The Kubelet is responsible for creating,

destroying, and monitoring all the pods and their containers.

 2. Container runtime – The runtime that helps the node retrieve

the container images to be used to create the pods. This can be

configured to be docker or rkt or a few other container types.

 3. Proxy – The proxy manager assigns and manages the IP addresses

in the node itself. Each node is created with a specific CIDR block

that can then determine the range of IP addresses the node can

assign to the pod. In most Kubernetes-managed systems, you will

never have to set the CIDR block yourself; instead, you manage

how many pods you will allow per node. By a default rule, you will

have twice as many allowed IPs than you will pods. If you have a

110 maximum pods, you will receive a CIDR block of /24 allowing

256 addresses. The reason for this is when you want to deploy

a new set of code to replace an existing, you don’t actually just

change the pod. You create a new pod; the system verifies the pod

comes up and then deletes the old pod. In a worst-case scenario

where you update everything at once, it would need twice as many

IP addresses as there are pods.

 4. cAdvisor – This is not on by default, but it is available as a monitor

to collect data about your containers to help determine if they

are running, if they are responding. This monitors health and

readiness probes on your pods as well as a number of configurable

factors to help give you a picture of your network and if there are

any issues. Regardless if you use cAdvisor or Prometheus (another

monitor), you will want to use something to monitor your

infrastructure so you can be reactive in failures and fix any issues

before your customers tweet about you.

Nodes are the heart of your Kubernetes-deployed applications, but as I mentioned,

you can have more than one node, so there has to be something that sits on top of them.

Chapter 7 Deployment

318

 Control Plane

The control plane is a collection of software that dispatches and controls all the nodes.

Whenever you need to make a change to your Kubernetes cluster, you interact with the

Kubernetes kube-api-server. The main bridges the control gap between the outside and

the nodes. It’s made up of four services that help facilitate this:

• kube-apiserver

• etcd

• kube-scheduler

• kube-controller-manager

Figure 7-8. Diagram showing the node architecture

Chapter 7 Deployment

319

In Figure 7-8, we diagram the layout of this architecture. When we interact with

Kubernetes, we will use an application called kubectl; this application takes in

commands and sends them to the kube-apiserver to perform actions. This could range

from reading the pods, to configuring the pods, to deleting the pods. This is our main

gateway into the system.

The etcd is a distributed key value store that is highly resilient and extremely

lightweight and fast. This will store all our configuration data and the current state of the

cluster. It’s good to back up this data in case of a disaster scenario where your deployed

cluster has a catastrophic failure. Having this backed up will reduce your downtime.

The scheduler assigns a worker node for each request to create a new pod. The

scheduler takes in multiple factors to balance the distribution across all the nodes in our

cluster. The scheduler works in conjunction with the controller manager. Finally, the

controller manager runs the controllers. These are processes that manage the pods and

the nodes. They make sure that when a request to create a pod is received, its schedule to

be created, creates our namespaces, and makes sure all our pods are up and running. In

reality, this does quite a bit of heavy lifting.

That is the basic architecture of a Kubernetes system. This also leads to some of

the downsides people have with Kubernetes. Suppose you wanted to deploy just one

application. This would be quite a bit of work and many services to manage one application,

especially if you only had one instance of the application. In addition, when you are buying

a cluster from a provider, realize some of that CPU/Ram you have purchased is going to run

the Kubernetes cluster, so your applications themselves don’t have the full shared power of

what you purchased. Hence, you are paying more for this orchestration layer on top.

Generally speaking, in a microservice architecture, I find these problems to not be

big though, and in most situations, the pros outweigh the cons in using a containerized

orchestrated environment. Now let’s take these concepts and deploy our applications to

Kubernetes.

 Deploying to Kubernetes
We will get into how to deploy to an external managed Kubernetes instance, but for now,

we are going to test with Kubernetes locally. There are a variety of options we choose

from including Minikube, but the easiest one is to simply use the Kubernetes that is

bundled with Docker. Let’s make sure you have it on first. On your docker running icon,

click preferences and then click Kubernetes. You should see that Kubernetes is enabled

and that it is running successfully like in Figure 7-9.

Chapter 7 Deployment

320

If it’s not enabled, enable it; if it is enabled but is not running, try restarting docker or

your computer – a very generic solution for sure, but easiest way to debug from a book.

While we will be setting up Kubernetes to run here, please be aware that when you

are testing locally, it’s still much easier to test against the running docker images locally.

This is a bit less overhead and easier to swap out. You do want to keep Kubernetes

around to test your deployed infrastructure and any other communication between pods

that may need to be tested.

Now that we have Kubernetes set up, let’s start using it.

Figure 7-9. Docker control plane on the Kubernetes tab

Chapter 7 Deployment

321

 Kubectl

The easiest way to start interacting with Kubernetes is via the command-line tool,

kubectl, which is short for Kube Control (and is pronounced that way or sometimes kube

cuttle). The kubectl uses certificates stored in the ~/.kube directory to access various

clusters. Let’s start by actually downloading and installing Kubernetes. In Listing 7-16,

we have the installation for OSX.

Listing 7-16. Installing kubectl on OSX

➜ brew install kubernetes-cli

And in Listing 7-17 are the installation steps for Linux.

Listing 7-17. Installing kubectl on Linux

➜ curl -LO https://storage.googleapis.com/kubernetes-release/release/

`curl -s https://storage.googleapis.com/kubernetes-release/release/

stable.txt`/bin/linux/amd64/kubectl

➜ chmod +x ./kubectl

➜ sudo mv ./kubectl /usr/local/bin/kubectl

Now that we have kubectl installed, you can run kubectl version; make sure it is

installed correctly and you have an up-to-date version. Also let’s make sure the kubectl

is pointing to our desktop. In Listing 7-18, we will retrieve all the contexts that have been

configured in the ~/.kube/config; if this is your first time using this application, you

probably only have the one.

Listing 7-18. Executing the build for the dockerfile

➜ kubectl config get-contexts

CURRENT NAME CLUSTER AUTHINFO NAMESPACE

* docker-for-desktop docker-desktop docker-desktop

The name may say docker-desktop or docker-for-desktop; both are the same and

are the Kubernetes instance for your docker. If you’ve used Kubernetes before, you may

have other listings; the * indicates which current system you are pointed to. Right now, it

should be on docker-for-desktop; if it’s not, use the command kubectl config use-

context docker-for-desktop to point it to the docker Kubernetes context. We will be

using the kubectl for our starting and creating of the files.

Chapter 7 Deployment

322

 Kubernetes Configurations

We now have the tools at our disposal, and we have the background knowledge to

understand Kubernetes and have initiated our local cluster. Let’s start deploying to the

cluster. In this section, we are going to take upload_svc as an example and deploy it to

the cluster multiple different ways. This will serve as background knowledge and learning

how to design a system. For now, we are going to use smaller examples; in the next section

when we use helm, we will dive into full-fledged sets of code with examples. Kubernetes

configuration files are yaml files that we spec out what the service needs; the Kubernetes

control plane can then parse the yaml to set up our controllers, services, and so on.

While we are going to go over a few of the different kinds for Kubernetes, this is not

all of them available, nor are they all the options available for each. We are going to go

over what we need to configure the application and only a bit more.

Namespace

The first thing to understand is the idea of namespaces. When deploying microservices,

you are more than likely deploying more than one service (like we are doing in our

application). But all these microservices are related to deploy for one particular

application or piece. At the same time, you may need to deploy multiple applications

which contain multiple microservices.

One way of doing this is deploying a different application with multiple

microservices to their own cluster. There actually are quite a few advantages in this

scenario in terms of segregation of concerns, security, and management. If major work

needs to be performed on a cluster, you are only effecting one application. Also assigning

memory, CPU limits, and so on is easier.

This all said, this can quickly and easily become a pain. Instead of one cluster to

upgrade, you could now have five. Also depending on the size of your applications, this

could cost you quite a bit more. What may fit on one medium cluster, you are putting on

five smaller ones. In addition, if the clusters need to communicate with each other, this

can become more difficult without good site meshing.

Another way of providing this segregation is namespaces. A cluster can have multiple

namespaces on it, which allows you to put multiple microservices in one namespace,

and you can have multiple namespaces on a cluster. It is also possible to control

memory and CPU per namespace as well. We will be using just one namespace for our

application.

Chapter 7 Deployment

323

Let’s create an iot namespace; in Listing 7-19, we create the iot namespace.

Listing 7-19. Creating the iot namespace

➜ kubectl create ns iot

namespace/iot created

Now that the namespace is created, we can start using it with our kubectl

commands; for any command we want to use from now on that applies to the

namespace, we will use the command kubectl -n iot <command>; go ahead and

try kubectl -n iot get pods; it should return nothing since we haven’t created any

pods yet (these are the same pods we discussed earlier). For brevity sake, whenever I

am working on an application, I create an alias for the kubectl command, usually k,

and also for the kubectl -n iot command, I will use ki. So, from here on out, all the

examples that use ki are referencing a kubectl command for the iot namespace.

Controllers

We have our namespace set up but nothing in the pods yet, and if you recall from what

I said earlier, we don’t actually create pods on our own; we use controllers to create the

pods and manage the pods themselves. There are two types of ways we will create pods,

either as Deployments or StatefulSet. Generally speaking, Deployments are used for

stateless applications, whereas StatefulSet is used for applications that require state or

require specific name and ordering of the pods.

Deployment

Let’s start with the easiest type of pods to deploy, the Deployment type. For these

examples, we are going to use the upload_svc and test various ways to deploy it,

hitting the health endpoint to check and prove that it’s up and running. Let’s create a

deployment that creates stateless pods. We will use the local/upload_svc image we

create and will need to define the web port we exposed. In Listing 7-20, we have our

deployment spec’d out; we will go over each important line in there.

Listing 7-20. Creating the iot namespace

apiVersion: apps/v1 ①
kind: Deployment ②
metadata:

Chapter 7 Deployment

324

 name: upload-dep-basic ③
 namespace: iot

spec:

 selector:

 matchLabels: ④
 app: upload-service # has to match .spec.template.metadata.labels

 replicas: 1 ⑤
 template:

 metadata:

 labels: ⑥
 app: upload-service # has to match .spec.selector.matchLabels

 spec:

 terminationGracePeriodSeconds: 10

 containers: ⑦
 - name: upload-service

 image: local/upload_svc:latest ⑧
 # Needed for the docker for desktop use

 # https://github.com/kubernetes/kubernetes/issues/1293#issuecomme

nt-357326426

 imagePullPolicy: Never ⑨
 ports:

 - containerPort: 3001 ➉
 name: web

 ➀ This is the version of the API we are using; this will differ per the kind

of Kubernetes configuration we are using.

 ➁ The kind will tell us what type of Kubernetes configuration we are

creating. Since are in a Deployment one, this is Deployment.

 ➂ The metadata allows us to attach labels or annotations to uniquely

identify this configuration file.

 ➃ The matchLabels are used to match the configured deployment. We

can match them within the configuration, or we can match it to other

services that need to reference this deployment.

Chapter 7 Deployment

325

 ➄ The replicas tell us how many of the pods we want to create;

remember this isn’t the pod, just the instructions on how to make the

pod.

 ➅ The labels here need to match what you wrote in bullet 4, the .spec.

selector.matchLabels.

 ➆ This is the container, the heart of what the application is defining and

deploying. You can have only one image per container, although we

can have init containers to prep the environments.

 ➇ This is the name of the image and its version in the format of

image:version. Since we didn’t specify the version before, we use the

latest. This is generally fine for development, but for production, you

will want a specific version.

 ⑨ This is to define when to pull the image; the default is IfNotPresent;

for us, we want None since there is nowhere to pull from since we are

using the local docker. If you always want it to pull which you often

do in production, you can set it to Always.

 ➉ The port to expose to the Kubernetes network. This should be the

same port we used in our code in the docker image.

This is our basic deployment; in Listing 7-21, we will deploy the deployment which

will deploy the pod. We use ki apply -f <YAML_FILE> to deploy the deployment.

You can then use the command we ran earlier, ki get pods, to find all the pods in our

namespace.

Listing 7-21. Deploying basic_deploy.yaml, our basic Deployment, and checking

the pods are created

➜ ki apply -f basic_deploy.yaml ①
deployment.apps/upload-dep-basic created

➜ ki get pods ②
NAME READY STATUS RESTARTS AGE

upload-dep-basic-8bb5f7cdf-ttcts 0/1 ContainerCreating 0 3s

Chapter 7 Deployment

326

➜ ki get pods ③
NAME READY STATUS RESTARTS AGE

upload-dep-basic-8bb5f7cdf-ttcts 1/1 Running 0 5s

A few takeaways, the creation is pretty straightforward, but then we check the pods.

You will notice it does take a few seconds to create the pods and have them ready to

access. Also notice the name of the pod is what we defined in metadata.name with a

random GUID after. The first part of the random GUID is created for the deployment

created, and the second set is random for the pods. If one pod is not enough for you,

we can create multiple pods; go back to your YAML file and set the replicas line to 2

(replicas: 2), and now redeploy the pod configuration: ki apply -f basic_deploy.

yaml; you will notice it will spin up another pod, and you should see two listed like in

Listing 7-22.

Listing 7-22. Deploying two pods for the application

 ki get pods

NAME READY STATUS RESTARTS AGE

upload-dep-6d989454d9-2p77f 1/1 Running 0 37m

upload-dep-6d989454d9-mt6bk 1/1 Running 0 37m

The replicas are part of how we can grow our system horizontally if needed and help

to allow higher throughput to our application.

Now remember what I said before; we didn’t directly create the pods; we created a

deployment which controls the creation of the pods. What happens then if we delete the

pod? In Listing 7-23, we delete the pod with the command kubectl delete pod <pod_

name>, and then right after, we will re-query all the pods.

Listing 7-23. Delete the pods and then re-query for all the pods

➜ ki delete pod upload-dep-basic-8bb5f7cdf-ttcts

pod "upload-dep-basic-8bb5f7cdf-ttcts" deleted

➜ ki get pods

NAME READY STATUS RESTARTS AGE

upload-dep-basic-8bb5f7cdf-wmbfv 1/1 Running 0 15s

Chapter 7 Deployment

327

As you can see by the ID, the pod we had before was deleted, but then the pod got

instantly recreated. This is because the controller is still alive. You can see the controller

when you query kubectl get deployment, like we have in Listing 7-24.

Listing 7-24. Query all deployments

➜ ki get deployment

NAME READY UP-TO-DATE AVAILABLE AGE

upload-dep-basic 1/1 1 1 117m

This gives us our basic deployment. You will notice the commands for get are

repetitive; they are always followed by the kind we are getting. You can use this same

pattern for all the different kind we go over. Let’s now try to truly delete the deployment;

we will use a similar command that we did for the pods. Once we delete the deployment,

it should delete all the pods for the deployment as well; in Listing 7-25, we will delete the

upload-dep-basic.

Listing 7-25. Delete the upload-dep-basic deployment

➜ ki delete deployment upload-dep-basic

deployment.extensions "upload-dep-basic" deleted

➜ ki get pods

NAME READY STATUS RESTARTS AGE

upload-dep-basic-8bb5f7cdf-wmbfv 1/1 Terminating 0 7m6s

➜ ki get pods

No resources found.

As you can see, the delete is successful, and the pod will start to terminate and run its

shutdown sequence to delete the container and the corresponding pod.

Persistent Volumes

If you recall from our discussions of pods, they have their own file system attached to

the pod. And this is large enough for whatever the docker image is defined for. But if

you recall for the upload-svc, it is downloading files and needs storage. What’s more

important is to realize that between pod deletion the files do not persist by default.

Anything that exists on the pod will be deleted. What we need is a guaranteed storage

mechanism that can also persist between pod creation and deletion.

Chapter 7 Deployment

328

In order to do this, we are going to use a persistent volume and a persistent volume

claim; these two will work hand in hand to set up storage which is permanent that can

last beyond the pods. The persistent volume is a declaration of storage being set up that

will interact with the kube system it is hosted on. The order in which this gets created

looks like Figure 7-10.

Figure 7-10. Diagram flow from pod to filesystem

In some systems, you will have to create it first and then assign the storage to a

persistent volume; in others, it will work under the covers. This can also be bound to

different types of file systems depending on what type of file system your underlying

host virtual machine is, since in the end that is the file system you are writing to. In

Listing 7- 26, we will define and create our PersistentVolume.

Listing 7-26. Creating the PersistentVolume, in file pvc.yaml

apiVersion: v1

kind: PersistentVolume ①
metadata:

 name: upload-iot-volume

 namespace: iot

spec:

 capacity:

 storage: 1Gi ②
 volumeMode: Filesystem

 accessModes:

 - ReadWriteOnce

 storageClassName: manual

 hostPath:

 path: /tmp/iot/download ③

Chapter 7 Deployment

329

 ➀ Defining this as a PersistentVolume.

 ➁ Defining the storage amount it is allowed to store up to; we will keep

this low for development.

 ➂ Defining the location on the file system; I am using the /tmp storage

because I want it ephemeral for now.

You can deploy this by typing ki apply -f pvc.yaml. If this is successful, you

should see an output marking it bound like in Listing 7-27.

Listing 7-27. PersistentVolume successfully bound

➜ ki get pvc

NAME STATUS VOLUME CAPACITY ACCESS MODES

STORAGECLASS AGE

upload-iot-volume-claim Bound upload-iot-volume 1Gi RWO

manual 3s

While the persistent volume creates the volume, the persistent volume claim in

Listing 7-28 declares the need for storage. This doesn’t necessarily mean there is one

but declares the need to get bound and will have to have a status of bound. The way this

can be thought of is the same way an asynchronous process like a promise happens. You

have a claim for the underlying file system, and it will eventually make sure that item gets

bound to a persistent volume filesystem.

Listing 7-28. Creating the PersistentVolumeClaim

apiVersion: v1

kind: PersistentVolumeClaim ①
metadata:

 name: upload-iot-volume-claim ②
 namespace: iot

spec:

 accessModes:

 - ReadWriteOnce

 volumeMode: Filesystem

 resources:

 requests:

Chapter 7 Deployment

330

 storage: 1Gi

 storageClassName: manual

 ➀ Defining this as a PersistentVolumeClaim.

 ➁ The name we will use as a reference when we define this for the deployment.

Once the claim is bound, you will get output similar to Listing 7-29.

Listing 7-29. PersistentVolumeClaim successfully bound

➜ ki get pv

NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS

CLAIM STORAGECLASS REASON AGE

upload-iot-volume 1Gi RWO Retain Bound iot/

upload-iot-volume- claim manual 8s

Let’s make use of the persistent volume for our deployment. We add to the spec at

the containers level a reference to the pvc we just created. In Listing 7-30, we add the

upload-iot-volume-claim to the pvc-data. You will have to delete the deployment and

recreate it for the volume to take effect and be attached.

There are many settings like replicas or others you can adjust and redeploy; other

settings that are more significant will require you to delete the deployment and recreate

the deployment. The documentation on the Kubernetes sites can get into quite a bit

more detail on those that we aren’t covering.

Listing 7-30. Referencing the PersistentVolumeClaim on the Deployment

volumes:

 - name: pvc-data

 persistentVolumeClaim:

 claimName: upload-iot-volume-claim

This code should be inserted at the end of the deployment that we created earlier

at the same level as - name: upload-service. Once deployed, if you want to see if

the volume is attached, we can use another kubectl command to look at the pod in

more details. The describe command will show you information about the container

including the image deployed, its ID, the IP, the port allocated, and the volumes

attached. In Listing 7-31, I’ve run the command, but for brevity, I am only showing the

Volumes section since that’s what we are interested in right now.

Chapter 7 Deployment

331

Listing 7-31. Running describe on the pod created by the deployment

➜ ki describe pod upload-dep-6d989454d9-2p77f

Name: upload-dep-6d989454d9-2p77f

Namespace: iot

...

Volumes:

 pvc-data:

 Type: PersistentVolumeClaim (a reference to a

PersistentVolumeClaim in the same namespace)

 ClaimName: upload-iot-volume-claim

 ReadOnly: false

 default-token-qp2m5:

 Type: Secret (a volume populated by a Secret)

 SecretName: default-token-qp2m5

 Optional: false

...

And now we have our persistent volume, the claim, and pvc attached to the pod.

There are a few different permutations of the fields you can use, but I wanted to go over

one final thing with them. And that is where we set the accessMode; we set this up as

ReadWriteOnce. There are three default supported options for this, and we will need to

set them to correctly identify what we are trying to do. Let’s take a look at what those

options are and their meaning in Table 7-1.

Table 7-1. RESTful endpoints

Type Description

readWriteonce the volume created can be used for read and write purposes by a SInGle node.

readonlymany the volume created can be used for read-only purposes, but can be accessed

by mUltIple nodes.

readWritemany the volume created can be used for read and write purposes by many nodes.

Now for our situation, we need to have ReadWriteMany if we are going to have more

than one pod, and given what the upload_svc does, it will need more than one pod.

This can become difficult since many types of disks from cloud providers do not support

Chapter 7 Deployment

332

the ReadWriteMany, for example, Google’s GCEPersistentDisk does not. You can find

a complete list here: https://kubernetes.io/docs/concepts/storage/persistent-

volumes/. What we really need to do is have a PersistentVolumeClaim for each pod

created for a deployment; this is not something we easily could code with Deployments

though. However, we will be able to do that exact thing when we do StatefulSet.

StatefulSet

StatefulSets are the next type we are going to look at; unlike deployments that should

generally remain stateless, the StatefulSet is used for our deployments that need to

maintain state or order. State is the ability to store data needed for the application or

persistable by the application. This can be for our upload service, or if you wanted to

deploy a database which needed to store the data in an area that is persistable and

survives, pod restarts.

Order of the pod creation and identify that order matters more with StatefulSet(s).

Before when we were creating the deployments, the pods all contained random digits

after the pod name; with Stateful, that will not be the case; they will create sequential

numbers after the deployment. This means if you were deploying mongo, you would

know the primary is the one that ends in -0 and the secondaries are anything that do not

end in -0. You can then program the containers to set up variables based on the names

of the pods. This all works well for a fully sequential system.

In Listing 7-32, we are creating out StatefulSet for the upload_svc. You will notice

that it looks mostly like the Deployment kind we created previously, and for the most

part, they do share quite a few attributes.

Listing 7-32. Creating the StatefulSet for upload_svc

apiVersion: apps/v1

kind: StatefulSet

metadata:

 ## Cannot use _ has to be just a dash

 name: upload-ss

 namespace: iot

spec:

 selector:

 matchLabels:

 app: upload-service-ss # has to match .spec.template.metadata.labels

 serviceName: "upload-svc"

Chapter 7 Deployment

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/

333

 replicas: 2 # by default is 1

 template:

 metadata:

 labels:

 app: upload-service-ss # has to match .spec.selector.matchLabels

 spec:

 terminationGracePeriodSeconds: 10

 containers:

 - name: upload-service

 image: local/upload_svc:latest

 # Needed for the docker for desktop use

 # https://github.com/kubernetes/kubernetes/issues/1293#issue

comment-357326426

 imagePullPolicy: Never

 ports:

 - containerPort: 3001

 name: web

This creates our StatefulSet with two pods; much like our deployments, let’s take a

look at what this looks like. In Listing 7-33, we will run the get pods again.

Listing 7-33. Running get pods for our StatefulSet

➜ ki get pods

NAME READY STATUS RESTARTS AGE

upload-ss-0 1/1 Running 0 60s

upload-ss-1 1/1 Running 0 56s

The name is sequential like I promised. Now with the statefulset.yaml as

designed, we still have the same issue we had before with no volumes for it. We are going

to add a section unique to StatefulSet which is the volumeClaimTemplate, so instead of

having to create our own PVC and then attach it in the pod, this will dynamically create

a pvc for each deployed pod. In Listing 7-34, we have the spec.volumeClaimTemplate

defined after our template for the container. Let’s add that to our code and redeploy

the StatefulSet; you can simply redeploy like you deployed before ki apply -f

statefulset.yaml; it uses the names in the labels to identify the statefulset.

Chapter 7 Deployment

334

Listing 7-34. The volumeClaimTemplate for our upload_svc StatefulSet, in

statefulset.yaml

 volumeMounts:

 - name: upload

 mountPath: /tmp/iot/download

 # Creates a new PVC for each one

 # Scaling them or deleting a SS wont delete the volumes by default thy

are created

 volumeClaimTemplates:

 - metadata:

 name: upload

 spec:

 accessModes: ["ReadWriteOnce"]

 resources:

 requests:

 storage: 1Gi

If we now check our persistent volume claims, we will see two more entries. In

Listing 7-35, we re-get the pvc.

Listing 7-35. Running get pvc for our PersistentVolumeClaims

➜ ki get pvc

NAME STATUS VOLUME CAPACITY ACCESS MODES

STORAGECLASS AGE

upload-upload-ss-0 Bound pvc-7f403104-d27a-11e9-aec3- 025000000001 1Gi RWO

hostpath 6m4s

upload-upload-ss-1 Bound pvc-81a041c4-d27a-11e9-aec3- 025000000001 1Gi RWO

hostpath 6m

Now we have the extra pvc to be used by each of the extra pods. One thing to

remember, if you decide to delete the statefulset later, you will need to manually

delete the pvc that was created.

Accessing Deployment and StatefulSets

The question you should be asking about now is how do we access the pod? Right now,

the way we have it set up there is no direct way; the pod is running by itself with no route to

Chapter 7 Deployment

335

the pod that you can control as currently configured. But that won’t stop us from testing

it and testing that individual pod. We can use the Kubernetes api to port forward one of

our local ports to a port on a specific pod (either in a local Kubernetes or in the cloud).

We use the port-forward command to forward from local to remote port on the pod. In

Listing 7-36, we forward to the Kubernetes port and then curl to that port. (Note: This was

done in two separate terminal windows since the port-forward is blocking.)

Listing 7-36. Using port-forward to access the pod

➜ ki port-forward upload-dep-basic-8bb5f7cdf-c9482 4000:3001 ①
Forwarding from 127.0.0.1:4000 -> 3001

Forwarding from [::1]:4000 -> 3001

Handling connection for 4000

➜ http http://localhost:4000/api/healthz ②
HTTP/1.1 200 OK

Content-Length: 2

Content-Type: text/plain

Date: Sun, 08 Sep 2019 17:41:52 GMT

OK

 ➀ Here we make the port-forward and you can see each time a

connection comes in.

 ➁ Making a call as if on localhost to the port.

This allows us to test our deployed pods, to make sure they are working, performing

as expected. But obviously, we still can’t access them from the outside world. And in fact

when we have multiple pods, how do we know which one to target? This only targets one

pod at a time, which can be useful for debugging or testing purposes. Often when testing

a local application, I will use port-forwarding if the instance needs to interact with a

service in dev or qa.

Logging

We can also view the logs that are generated on individual pods as well. In our preceding

statefulset, one of the pods was named upload-upload-ss-1; you can run ki logs

upload-upload-ss-1 or ki logs -f upload-upload-ss-1 if you want the logs to

be continuous. We use this often to monitor and troubleshoot. You can do this with

production systems as well, but there you usually have an aggregator like splunk instead.

Chapter 7 Deployment

336

Services

Using port-forward is great for testing but is not how we want to expose the application

to the outside world. In fact right now, there isn’t even a way for pods themselves can

communicate with each other since the IP addresses they are assigned to can be changed

on pod creation and are only internal IPs. We need to be able to access the pods both from

the outside world and internally between pods. To do this, we use the Service kind.

When we define a service, we then define selectors which match the selectors of pods

that we have created with deployments and statefulsets. Services use the kube- proxy to

route traffic into the correct pods. Every time a service is created, the Kubernetes control

plane creates a random port on the local node; this is the proxy port. Any connections

that can then be routed to that port can be sent to the service backend. In the end, this

allows us to expose a pathway through via the service definitions to the pods.

By default, the mechanism they use to do this is round robin, but there are in

fact various modes and various ways we can set the routing. For this book, we are

going to go with the most basic (round robin); if you want to read more about the

networking possibilities, you can read up on the Kubernetes documentation at https://

kubernetes.io/docs/concepts/services-networking/.

For now, let’s just go over two different types we can create: the cluster IP and the

NodePort; both of these examples will use the Service kind; they will just differ on the

types and options they implement.

Cluster IP

The first type we will look at is the cluster ip. The main goal of the cluster ip is to

expose service routes internally for the microservices. If you need your pod to talk to

another microservice, you can use the cluster ip to route that traffic internally while

still maintaining a load balance and not exposing it externally. In Listing 7-37, we are

creating a cluster ip to attach to our statefulset.

Listing 7-37. Using port-forward to access the pod

apiVersion: v1

kind: Service

metadata:

 name: upload-svc-service

 namespace: iot

 labels:

Chapter 7 Deployment

https://kubernetes.io/docs/concepts/services-networking/
https://kubernetes.io/docs/concepts/services-networking/

337

 app: upload_service

spec:

 ports:

 # needs to be the port running on the deployment/SS

 - port: 3001 ①
 name: web

 # Create a cluster IP without an actual IP address for it

 # headless service

 #clusterIP: None

 selector:

 app: upload-service-ss ②

 ➀ The port we are forwarding the traffic to.

 ➁ The selector that matches against the spec.selector.matchLabels

we defined in the StatefulSet.

About the selectors, we only use one for our examples; if you have multiple selector

labels, you need to match against all of them. This of course in a big system allows us to

be more specific.

Once created, the service upload-svc-service with a dynamic ip address is created;

you can see this result in Listing 7-38.

Listing 7-38. Deployed service with a ClusterIP

➜ ki get svc

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

upload-svc-service ClusterIP 10.108.90.207 <none> 3001/TCP 3s

Now the IP address is not going to help you much with a service accessing another

service; since if you ever delete the service, a new ip address would be allocated, and

you probably don’t want to have to redeploy your other apps with the IP address. We

can also access this domain internally via a local DNS name. For each service, a DNS A

record name will be created in the format <service>.<namespace>.svc.cluster.local

using the kube-dns. If you want to use a more standard domain internally, you can run a

custom DNS server, but this is usually unnecessary. For our example in order to access,

you would use the address upload-svc-service.iot.svc.cluster.local:3001.

Chapter 7 Deployment

338

This is for internal accessing; however, we can still use port-forwarding on this to test

our service access. The port-forwarding will be in the form of svc/<service-name>; in

our example, you would call ki port-forward svc/upload-svc-service 3001:3001.

Try it locally and use the same call we used earlier.

Headless

Another topic I want to mention is the concept of a headless service. A headless service

is one that does not expose an IP and does not use round-robin mechanism. The main

purpose of this is for stateful services to access the pods directly. This way, you can use

the ordinal number to access the service. This is mostly useful for services that have

to specify a primary/secondary relationship in their setups like when configuring a

MongoDB stateful service. We won’t be using them here, but to configure them, you just

need to set the clusterIP: None, and that will be a headless service.

NodePort

Doing the port-forwarding is obviously not ideal; let’s go over one way of setting up

a service so that we can access it without using a port-forward. The NodePort will

expose a static ip on the node bound to the port we define; we can then access that

service. In Listing 7-39, we define our NodePort service.

Listing 7-39. Defining a nodeport

apiVersion: v1

kind: Service

metadata:

 name: upload-svc-np

 namespace: iot

 labels:

 app: upload_service

spec:

 # Create a cluster IP without an actual IP address for it

 #clusterIP: None

 selector:

 app: upload-service-ss

 type: NodePort ①
 ports:

 # needs to be the port running on the deployment/SS

Chapter 7 Deployment

339

 - port: 3001

 nodePort: 30001 ②
 targetPort: 3001 ③

 ➀ Defines the type as NodePort.

 ➁ Sets the port on the node we are attaching to.

 ➂ Sets the port we are forwarding to that matches the selector.

Now we are able to access our endpoint without going through the port-forward; in

Listing 7-40, we hit the upload-svc endpoint on the statefulset directly.

Listing 7-40. Executing against the node endpoint directly

➜ http http://localhost:30001/api/healthz

HTTP/1.1 200 OK

Content-Length: 2

Content-Type: text/plain

Date: Mon, 09 Sep 2019 02:07:50 GMT

OK

Ingress

NodePorts are great for debugging and development purposes; however, we usually

do not use them in production for exposing endpoints. We want to expose into the

endpoints one route that can allow a gateway into the system that can then be parsed

by host name or url. The easiest way for us to do this is to use an ingress controller; the

ingress controller provides a pathway in and then get be pushed from there.

We will create a sample one here; we won’t deploy this one right now as this is more

for our deployed environment, but we will make more use of it in our helm section. In

Listing 7-41, we have the ingress controller for our application.

Listing 7-41. Defining our ingress controller

apiVersion: extensions/v1beta1

kind: Ingress

metadata:

 name: ingress-for-rust-iot

Chapter 7 Deployment

340

 namespace: iot

spec:

 rules:

 # can have multiple hosts

 - host: www.rust.iot ①
 http:

 paths:

 - path: /api ②
 backend:

 serviceName: upload-svc-service ③
 servicePort: 3001 ④
 - path: /graph ⑤
 backend:

 serviceName: retrieval-svc-service

 servicePort: 3000

 # Can contain multiples

 # kb get pods -o wide --sort-by="{.spec.nodeName}"

 ➀ Defines the host name that an external DNS will point to our

NodePort for this to route requests to.

 ➁ All paths that are /api/* will route to this backend.

 ➂ Defines our service name for the backend.

 ➃ Defines our port on our service for the backend.

 ➄ All paths that are /graph will route to this backend.

From here, we will move on to helm; this was a very quick overview of the features

of Kubernetes, specifically the features we are going to make use of. The Kubernetes site

is VERY well documented, but hopefully this gives you a starting point to examine more

when needing to customize.

 Helm Charts
In the previous section, we showed how to deploy the application via Kubernetes. This

gave us a standard, reproducible way to deploy our application to our clusters (at present

we are using just the docker-for-desktop cluster). This, however, was a very manual

process where we had to deploy each k8s file. This along the way can create issues:

Chapter 7 Deployment

341

• How do you manage deployment to different environments?

• How do you dynamically change values in the configuration?

• What happens when you go to a microservice environment?

• How do you initiate rollbacks?

These are all important questions to ask yourself. The first one can easily become

cumbersome fast. For development, staging, production, or QA, you will generally

have to have different configurations for each. This is often done by creating multiple

directories, each with the same files in it.

Oftentimes, things like memory and image location are areas you want to update

dynamically, and while you want the event recorded, you may want to do it more across

the board to your microservices as opposed to each individual one.

And finally microservices, this is more of a time issue. Imagine you have a system with

a dozen or two, let alone hundreds of microservices and want to deploy/redeploy them

all. This not only becomes cumbersome to do manually, but what if you forget to do one?

That could break your own system. Plus do you really want to create deployment scripts

by hand that do each or your Operations owners to run each? Push-button deployments

are popular for a good reason, because they increase the safety of your environment.

And finally, one of the most important areas rolls back; if you deploy to production

and it causes a failure, you can easily roll back the image, but if more than the image

changed, the environment configuration changed and you want that rolled back as well.

What is needed is a deployment package manager, and luckily, we have a solution

Helm. Helm is a package manager specifically designed for Kubernetes to make

grouping multiple service deployments into one deployable sequence. This will allow us

to package our deployments for deploying applications.

 What It Does
Helm has two parts to it: a client application and a service running in your Kubernetes

deployed environment. The service is used for the client to interact with to know what is

deployed and the status of the deployment, whereas the client does much of the heavy lifting

of converting our helm marked up Kubernetes files to deployable artifacts and deploying

those artifacts. Helm uses Golang style syntax as a markup language with convention style

configuration to create scripts and value replacement for the Kubernetes Yaml files.

Aside from allowing services grouped into one deployment, one of the biggest features

Helm buys us is allowing us to dynamically allow value replacement for our Kubernetes

Chapter 7 Deployment

342

configurations. Having dynamic values allows us to set field that we can change per

deployed environment. A few examples of values you would replace are as follows:

• Image tags – To allow different docker image versions per environment.

• Memory/CPU allocations – To adjust the memory and CPU per

environment. Your local and dev environments will likely take less

CPU/memory to process. And if you are running in a local VM, you

may not have as much memory to use, and if you are deployed, you

do not want to overspend for development environments.

• Replicas – Similar to CPU/memory, the amount of pods deployed in

production vs. development is usually greatly different. I will say in dev

environments, I often still have at least 2–3 replicas running to make sure

their services aren’t idempotent. This way, we make sure that there isn’t

a difference calling our application on one running service vs. many.

• Entire Yamls – Since Helm uses actual Golang style syntax, we can

write actual coding into our Helm scripts; this includes if statements.

This makes it so we can put a giant if statement in a Kubernetes file to

declare when it’s deployed. This is useful for data services that may

be only used in local development.

 Installing Helm
To start with, we will need to install helm before we can start running any helm

commands. Helm, like many of our other tools, can be installed with homebrew or a

various options; in Table 7-2, we have a few different options.

Table 7-2. Helm installation

OS Instructions

oSX brew install helm

linux w/ snap sudo snap install helm --classic

Windows w/ choco choco install kubernetes-helm

Windows w/ scoop scoop install helm

Unix misc $ curl -lo https://git.io/get_helm.sh $ chmod 700 get_helm.sh

$./get_helm.sh

Chapter 7 Deployment

https://git.io/get_helm.sh

343

This will install the client for us and will allow us to make helm calls against our

Kubernetes instances. If you are familiar with Helm before 3.0, you also probably

remembering having to install tiller on your deployed server. That has been (thankfully)

changed in 3.0. We can now move on to using helm.

 Creating a Helm Chart
Helm uses a convention over configuration mechanism for defining how to create our

helm files and directories. The charts are organized inside of a directory in your project;

this can be at the root or in a subdirectory, but you want to give it a meaningful name.

For our application, we are going to create a directory of deploy/iot, and this will be

where we define our chart, its values, and the templates for the Kubernetes files.

Inside of the helm directory deploy/iot, there will be a few required and optional

files/directories; we have that structure in Table 7-3; anything that is a directory will

end with /.

Table 7-3. Chart file structure

Name Required Description

Chart.yaml yes the yaml file containing the details, name, and

description of the chart.

values.yaml yes the configuration yaml that will drive the overwritable

values we use in our templates.

templates/ yes this will contain the Kubernetes templates we will deploy

to Kubernetes.

lICenSe no the file containing the license for the chart.

reaDme.md no a markdown readme file, good for details when deploying

to visual repository readers.

charts/ no optional directory of extra charts.

requirements.yaml no the yaml file that lists our other chart dependencies for

our chart (could be items like postgres, etc.).

templates/_helpers.tpl no a holder for template helpers that we can reuse across

templates.

Chapter 7 Deployment

344

Let’s start with the first file, the Chart.yaml; this is our starting file that defines the

name, description, and version for the helm chart. You can define a minimal version of it

like we do in Listing 7-42.

Listing 7-42. The Chart.yaml for our iot application

apiVersion: v1

appVersion: "1.0"

description: Helm charts for our collection of rust IOT microservices.

name: rust-iot

version: 0.1.0

What’s in there is a typical set that I try to put in there with a mix of required and

optional fields; in Table 7-4, we have a list of the possible fields for the chart.

Table 7-4. Chart file structure

Name Required Description

apiVersion yes the chart version; always use “v1” until helm has a next version.

name yes Unique name of the chart that will show up in your Kubernetes helm list.

version yes the version for this deployed helm chart; must be in a SemVer format.

appVersion no the version of the application contained by the chart.

description no a description of the project this helm chart encapsulates.

kubeVersion no the Kubernetes version that this helm chart supports; should be in a

SemVer range.

keywords no a set of keywords that describes the project.

home no a Url for the home page of the project, if there is one.

sources no a set of Urls for the source code of the project.

maintainers no has three fields beneath it for name/email/url, so one knows who to

notify of issues.

engine no name of the template engine; defaults to gotpl.

icon no a Url to an icon for the project.

deprecated no a true/false boolean if this chart is deprecated; defaults to false.

tillerVersion no a SemVer range of the tiller version for the project.

Chapter 7 Deployment

345

In most cases, I wouldn’t use both appVersion and version, but it can be useful if

you are changing the deployed Kubernetes files while not actually changing the deployed

application. We have used a subset of those options in the chart; many of those options

are more useful when creating charts that are to be publicly exposed vs. a project that is

for internal consumption, and this book is targeted more toward an internal application.

These values we can use later in our templates.

 Templates

Our templates are simply going to be our Kubernetes files that we created earlier, kind

of. In that, they will have the structure of Kubernetes but will be able to contain dynamic

values inside of it. We will use these dynamic values to be able to easily alter our builds

between local, dev, qa, and prod without having to change any of the core features. Our

templates can not only contain hard-coded values but can contain objects that can be

sourced in three different ways:

 1. Release metadata

 2. Chart data

 3. Values.yaml

Release Metadata

Every time you deploy your helm charts, this is considered a release. You are able to use

the metadata of the release to populate the chart; this can be especially useful when

creating the name since a name has to be unique across deployed environments and

you can tie them to a release. But there is more than just name; there are many other

attributes. In Table 7-5, there is a list of those attributes.

Chapter 7 Deployment

346

Items like the Release.Revision are set automatically by the system; most of the

others you will configure when creating your actual deployment of the chart. We will

show how to change those later; for now, realize we can use these as values in our charts

to create a unique set.

Chart Data

The items we set earlier in Table 7-5 for the chart, we also can reference those in our

templates as well.

Values.yaml

Finally, this truly is the big one, the values.yaml; we discussed this briefly when

we mentioned it existed in the file structure. This will be our heart and soul for

configuration. This will allow us to not only create a configuration but also to be able

to dynamically create changes by environment. What kind of changes do you make per

environment? Let’s think of a few:

• Image repository – While the repository usually stays the same

between dev, qa, and prod, you will have a different repository for

local vs. deployed.

Table 7-5. Release attributes

Name Description

release.name the name of the release; this can be a hard-coded value or dynamically

generated.

release.time the release time.

release.namespace the namespace for the release to be deployed to.

release.Service the name of the service performing the release; in all cases, this is Tiller.

release.revision the revision number of the release; this is incremented for each release.

release.IsUpgrade Is set to true if the operation is an upgrade or rollback.

release.IsInstall Is set to true if it is an initial install.

Chapter 7 Deployment

347

• Image tag – This is one that will change as you go between

environments. Often dev will be latest, whereas your staging and

production should be tagged numbers that you know are deployed.

• Resources – How we configure the vertical scaling of memory, cpu,

and so on will change between environments depending on the need

and the configuration of the cluster.

• Replica sets – How we configure the horizontal scaling. I often

recommend at least 2–3 pods for development regardless of need,

if you plan to scale. This way, you have an idea if your application

works OK with multiple service endpoints or if there is in memory

data that may cause issues.

And whatever else you need to configure, these are just a few obvious examples.

 Mapping Our Deployments
We mentioned earlier we will have a number of applications to deploy outside of our

core applications to the system; we will also use helm charts to deploy those as well.

These will all be used either directly or indirectly to support the complete system. We

will start with deploying the built-in systems and then move on to our custom systems

that we started to work on in the previous sections. We will be deploying our application

as one helm chart, but we have a few other things we need to deploy first before we start;

in Table 7-6, we have a list of them.

Table 7-6. Extra helm deployments

App Custom Chart Local Only Description

Sealed Secrets no no Used to have a mechanism to decrypt secrets

that we store into git.

emQtt no no Used for our emQtt deployment with secrets.

Chapter 7 Deployment

348

 Dependency Helm Charts

In helm, you can specify dependencies within the helm chart and have those helm

charts installed independent. This can be good for development purposes or if you

are publishing a framework for consumption (i.e., you are deploying a helm with

microservices that use a specific database only for it). However, for our own applications,

I prefer to keep them separate. The major reason is that I want to keep my data layers

more intact and workable against helm deletes/redeploys. Take our MQTT for example.

This interacts also with the Raspberry Pi; we would want to keep it up and running at

all times. We wouldn’t want its uptime dependent on other deployments. In fact, in a

full production system, you could even put the MQTT in its own cluster. But this also

depends on the size of your system to weigh the necessity.

 Deploy the Extra Charts

We will start off with deploying the dependency charts. These tend to be a bit easier, and

we will deploy these here and on the server manually.

EventStore

We used the eventstore earlier to hold our CQRS events that we created dynamically.

This needs to be persistable to work through pod and helm redeployments of the

main application. We are going to use the helm chart created at https://github.com/

grigorov/eventstore-helm.

Many of the features we don’t need since we specifically do not want this accessible

outside of our network. To deploy our helm chart, we will override only a few of the

values, specifically disabling the ingress. In Listing 7-43, we have the values we will

deploy for the helm chart.

Listing 7-43. The values to override, located in eventstore_values.yaml

This is only used internally

ingress:

 enabled: false

we don't need a host cause we will use the cluster route

persistence:

 enabled: true

Chapter 7 Deployment

https://github.com/grigorov/eventstore-helm
https://github.com/grigorov/eventstore-helm

349

In order to use this helm chart, we will have to add it to our helm repo and then

install. In Listing 7-44, we add the chart to our home repo.

Listing 7-44. Adding the eventstore home chart to our home repo

➜ helm repo add eventstore https://eventstore.github.io/EventStore.Charts

"eventstore" has been added to your repositories

➜ helm repo update

Now in Listing 7-45 we can install the eventstore into our Kubernetes instance.

Listing 7-45. Installing the eventstore

helm upgrade --install --namespace iot cqrs-es -f eventstore_values.yaml

eventstore

Eventstore is now installed in our Kubernetes cluster.

EMQX

Next in Listing 7-46, we are going to do something similar for EMQT, by installing the EMQX

chart from https://github.com/emqx/emqx-chart. Let’s first go over the variables we are

overriding. The main set is to turn on the SSL secrets and set the location of the EMQTT certs.

Listing 7-46. The values to override, located in emqtt_values.yaml

namespace: iot

image: devrealm/emqtt

persistence:

 enabled: true

emqxConfig:

 EMQ_LISTENER__SSL__EXTERNAL__KEYFILE: "\/etc\/ssl\/certs\/EmqttIot.key"

 EMQ_LISTENER__SSL__EXTERNAL__CERTFILE: "\/etc\/ssl\/certs\/EmqttIot.pem"

 EMQ_LISTENER__SSL__EXTERNAL__CACERTFILE: "\/etc\/ssl\/certs\/RustIOTRootCA.pem"

 EMQ_LISTENER__SSL__EXTERNAL__VERIFY: verify_peer

 EMQ_LISTENER__SSL__EXTERNAL__FAIL_IF_NO_PEER_CERT: true

 EMQ_LOG_LEVEL: debug

 EMQ_ADMIN_PASSWORD: your_password

Chapter 7 Deployment

https://github.com/emqx/emqx-chart

350

Now in Listing 7-47 let’s add the emqx repo, update it, and deploy it using the values

for the chart.

Listing 7-47. Installing EMQTT

~ ➜ helm repo add emqx https://repos.emqx.io/charts

"emqx" has been added to your repositories

➜ helm repo update

➜ helm install --namespace iot --name my-emqx emqx/emqx

Sealed Secrets

We will allow you do the sealed secrets in your time. The point of sealed secrets is to

create a secret-based system using public and private keys; that allows us to then check

in a secret file that has the encrypted file here. You can also perform this with ejson as

well. For information on Sealed Secrets and how to use it, you can go here: https://

github.com/bitnami-labs/sealed-secrets; the Helm chart is located at https://

github.com/bitnami-labs/sealed-secrets.

 Deploying Our Chart

Deploying our charts is fairly easy once we put them in the right configuration; let’s set

up the directory structure to mimic what we have earlier. Since we are deploying all our

microservices together, let’s set up our directory structure with that in mind. Under the

deploy directory in the root, we are going to create an iot directory which will have the

typical helm structure, like in Listing 7-48.

Listing 7-48. The directory structure for our IoT deployment

/deploy

 /iot

 Chart.yaml

 values.yaml

 /templates

 _helpers.tpl

Chapter 7 Deployment

https://github.com/bitnami-labs/sealed-secrets
https://github.com/bitnami-labs/sealed-secrets
https://github.com/bitnami-labs/sealed-secrets
https://github.com/bitnami-labs/sealed-secrets

351

This is a typical, repeatable structure that you will replicate for any other helm charts

you want to create. The values.yaml file will be empty for now, until we start adding to

the templates. For the Chart.yaml, I have it defined in Listing 7-49.

Listing 7-49. Our Chart.yaml file for the iot project

apiVersion: v1

appVersion: "1.0"

description: Helm charts for our collectioThn of rust IOT microservices.

name: rust-iot

version: 0.1.0

This is typical structure and only filled out a few fields, but enough for us to get going.

The templates directory is empty for now. Let’s populate it with some templates that we

will fill in later. The following empty template files will be needed to correspond to our

services we want to deploy:

• ingress.yaml – The Kubernetes yaml for our ingress controller that

will allow our routing into the system

• mqtt_deployment.yaml – The Kubernetes yaml for our MQTT service

• retrieval_deployment.yaml – The Kubernetes yaml for retrieval

service that exposes the HTTP port for GraphQL and RESTful

endpoints

• retrieval_rpc_deployment.yaml – The Kubernetes yaml for the

retrieval service that exposes the RPC that our MQTT interacts with

to save to the database

• upload_ss.yaml – The Kubernetes yaml for our StatefulSet upload

service

• service.yaml – The Kubernetes service that will expose each of our

pods internally

• secret.yaml – The secret file that will contain our certs for the MQTT

as well as our database URL for our database passwords

We aren’t going to step through all the files; I will have them all in the source

documentation, but we will step through most of it though.

Chapter 7 Deployment

352

Helper File

The helper template is used to create functions that we can use for the rest of our

templates. By default, any file that starts with an underscore will be considered a

template, but the default is having the _helpers.tpl. We are going to use the helpers

for now to create names dynamically that append the chart name to it as well as others

that truncate the full name. In Listing 7-50, we have an example of creating a function

mqtt.name that takes mqtt and adds the chart name to it. This helps in keeping our

services unique across multiple help chart deployments in the same namespace.

Listing 7-50. Portion of the _helpers.tpl outputting the mqtt name

{{- define "mqtt.name" -}}

{{- default .Chart.Name "mqtt" | trunc 63 | trimSuffix "-" -}}

{{- end -}}

In addition, we can add even more complex functioning inside our template helpers.

Let’s look at a few calls we can use inside our template:

• if – We will use the if template to designate what parts of the yaml file

to display and what parts not to. This is great to activate features.

• printf – The printf outputs dynamic or static variables and text. We

can also wrap the output in quotes or binary encoding.

We use these calls in to create a mqtt.fullname function that will output mqtt with

the chart and release name and any overridden names in Listing 7-51.

Listing 7-51. Portion of the _helpers.tpl outputting the mqtt full name

{{- define "mqtt.fullname" -}}

{{- if .Values.fullnameOverride -}}

{{- .Values.fullnameOverride | trunc 63 | trimSuffix "-" -}}

{{- else -}}

{{- $name := default .Chart.Name "mqtt" .Values.nameOverride -}}

{{- if contains $name .Release.Name -}}

{{- .Release.Name | trunc 63 | trimSuffix "-" -}}

{{- else -}}

{{- printf "%s-%s" .Release.Name $name | trunc 63 | trimSuffix "-" -}}

Chapter 7 Deployment

353

{{- end -}}

{{- end -}}

{{- end -}}

We will use these templates throughout our Kubernetes templates. You can reference

these within the yaml with the call {{ template <function_name> . }}. We will use

this same pattern for the rest of the microservice names and will use them later on in the

following sections.

Secret

Let’s move on with the secret service since you will need the secrets in place for our other

services to work. We can use the Sealed Secrets to create this file, but for development

purposes, we are going to create the secrets ourselves. There are four variables we need

to store in the secrets:

• client.crt: – The public cert for our client

• client.key: – The private cert for our client

• root.ca: – The public Root CA

• databaseUrl – The database URL contains the url for the database

referenced by the upload service

We are going to create a skeleton for testing with this, which we will only use for dry

run testing. The dry run testing refers to running our helm charts to display what the

translated Kubernetes code will look like; this is great for testing.

Listing 7-52 has the output of our secret.yaml file.

Listing 7-52. The secret.yaml file

{{- if .Values.useSecret -}} ①

apiVersion: v1

kind: Secret ②
metadata:

 name: {{ template "iot.fullname" . }} ③
type: Opaque

Chapter 7 Deployment

354

data:

 client.crt: {{ printf "DevStuff" | b64enc }} ④
 client.key: {{ printf "DevStuff" | b64enc }}

 root.ca: {{ printf "DevStuff" | b64enc }}

 databaseUrl: {{ printf "DevStuff" | b64enc }}

{{- end -}}

 ➀ In our values.yaml file, we have the definition of useSecret set

initially to true.

 ➁ Defines this kind as a Kubernetes Secret.

 ➂ References the function iot.fullname defined in the _helpers.tpl.

 ➃ Prints out “DevStuff” in base64 since that is the opaque type we use

for secrets.

This will create a good starting point for testing and for referencing. However,

you don’t want to check in a secret file with your actual data in it since that would be

exposing certificates, URLs, and so on forever in your git repo or history.

For now, what we are going to do is just deploy the secrets ourselves outside of

helm. This lets us manage it our own, and these shouldn’t change that often or through

another process (like using sealed secrets). To deploy it, there is a command line until

that allows us to deploy our secrets directly to our Kubernetes system. In Listing 7-53,

we create a secret that contains all our secrets needed, three from the file and one from

a URL.

Listing 7-53. The command line to create a secret

ki create secret generic iot \

--from-literal=databaseUrl=postgres://user:password@localhost:5432/rust-

iot-db \

--from-file=PiDevice.pem=client.crt

--from-file=PiDevice.key=client.key

--from-file=RustIOTRootCA.pem=root.ca

You can run this from the directory that contains your certs, and you will have

deployed the secret; you can examine it in the Kubernetes by running ki describe

secret iot.

Chapter 7 Deployment

355

Upload Service

We worked with the upload service in our Kubernetes section finally deciding on using

and creating a statefulset. We will use this as our basis for our upload service going

forward. But we need to add a few items to make it a good template and fully functional:

 1. Convert a few of the names to dynamic names.

 2. Add Kubernetes labels to our metadata.

 3. Add liveness and readiness probes.

 4. Add our environmental variables.

Let’s convert our selectors to use the template name we created earlier. We are going

to use the template we created earlier; in addition, we need to add to our match labels.

Since potentially you could release other applications with an upload or if you wanted to

release two versions of the same helm chart under different releases. In Listing 7-54, we

have a subset of the upload_ss.yaml file for our selectors.

Listing 7-54. The selector area of the upload_ss.yaml file

selector:

 matchLabels:

 app: {{ template "upload.fullname" . }}

 release: {{ .Release.Name }}

Next let’s add extra metadata for the labels. These can be used for monitoring and

allow more information to know what pod you are using when debugging the pod. In

addition, the app.kubernetes.io labels are Kubernetes recommended labels.1 These

labels are also used by applications to interact with Kubernetes. In Listing 7-55, we have

the labels defined.

Listing 7-55. The metadata label upload_ss.yaml file

kind: StatefulSet

metadata:

 name: {{ template "upload.fullname" . }}

 namespace: {{ .Release.Namespace }}

1 https://kubernetes.io/docs/concepts/overview/working-with-objects/common-labels/

Chapter 7 Deployment

https://kubernetes.io/docs/concepts/overview/working-with-objects/common-labels/

356

 labels:

 app.kubernetes.io/name: {{ include "upload.name" . }}

 app.kubernetes.io/instance: {{ .Release.Name }}

 app.kubernetes.io/version: {{ .Chart.Version | replace "+" "_" }}

 app.kubernetes.io/component: iot

 app.kubernetes.io/part-of: {{ template "upload.name" . }}

 app.kubernetes.io/managed-by: tiller

 helm.sh/chart: {{ .Chart.Name }}-{{ .Chart.Version | replace "+" "_" }}

These two sections we will be using in the rest of the templates yaml files; we won’t

explicitly point it out in the book but will be in the code.

Next let’s focus on the container section. In Listing 7-56, we are going to convert our

image and policy names to dynamic values, add our liveness and readiness probes, and

add env variables we had missing.

Listing 7-56. The container section of the upload_ss.yaml file

 containers:

 - name: upload-service

 image: "{{ .Values.services.upload.image.repository }}:{{ .Values.

services.upload.image.tag }}" ①
 imagePullPolicy: {{ .Values.services.upload.image.pullPolicy }}

 ports:

 - containerPort: {{ .Values.services.upload.port }} ②
 name: web

 volumeMounts:

 - name: upload

 mountPath: /tmp/iot/download

 env:

 - name: SERVER_ADDR

 value: "{{ .Values.services.upload.host }}" ③
 - name: PORT

 value: "{{ .Values.services.upload.host }}"

 - name: RETRIEVAL_URL

 value: "http://{{ template "retrieval.name" }}.{{ .Release.Name

space }}.svc.cluster.local:{{ .Values.services.retrieval.port }}" ④

Chapter 7 Deployment

357

 livenessProbe: ⑤
 tcpSocket:

 port: web

 initialDelaySeconds: 3

 readinessProbe:

 tcpSocket:

 port: web

 initialDelaySeconds: 3

 resources: ⑥
 {{- toYaml .Values.services.upload.resources | nindent 12 }}

 ➀ Set the image repository and tag from the Values.yaml since these

values will be different in local vs. deployed and for environments.

 ➁ Use a dynamic container port that we can also use the same value

in our services to make it easier to only need to change the port with

one setting.

 ➂ Dynamic values for our SERVER_ADDR and PORT.

 ➃ Use the kube-dns dns entry that will match the retrieval service.

 ➄ Add the liveness and readiness probes that connect to the web

container port.

 ➅ Dynamically adding resource entries.

The liveness and readiness probes are critical for use for mutual TLS site meshing

and monitoring and are another section we will add to all our deployments by default. In

this section, I’ve referenced quite a few different Values.yaml references. In Listing 7-57,

I have the values we are using for that section.

Listing 7-57. The upload services section of the Values.yaml

services:

 upload:

 image:

 repository: local/upload_svc

 tag: latest

 pullPolicy: Never

 replicaCount: 2

Chapter 7 Deployment

358

 type: ClusterIP

 port: 3001

 host: 0.0.0.0

 resources: {}

All of these reference the values we used earlier in the upload_ss.yaml code. Before

we move on, let’s look at that resources again. In our upload_ss.yaml, you notice we

had that as a placeholder. The resources contain our memory, cpu, and so on; this will

use our default settings. In the yaml, we listed it as an empty {} block; thus, we aren’t

adding anything to it. However, if we did want to add to it, we could add to the block

mimicking what you’d put in from the standard Kubernetes resources documentation.

I’ve defined in Listing 7-58 an example of what that could look like.

Listing 7-58. The resources section defined with cpu and memories

resources:

 limits:

 cpu: 100m

 memory: 100Mi

Much of what we have done can be reused and are reused in the retrieval and MQTT

service. We will only focus on the differences for the next sections.

Retrieval Service

The retrieval service is a bit unique in our deployments. With the retrieval service, we

are deploying the application twice, first for the http endpoint and second for the rpc

endpoint. Part of the reason to do this is the ease in scalability. To define two different

areas, we will have the HTTP command associated with one port and the RPC associated

with another. In Listing 7-59, we have our associations for the HTTP port.

Listing 7-59. The HTTP associations for retrieval service retrieval_

deployment.yaml

command: ["./retrieval_svc"]

ports:

- name: http

 containerPort: {{ .Values.services.retrieval.port }}

 protocol: TCP

Chapter 7 Deployment

359

Http is the default service that gets ran for our http service; the rpc service was

actually created as a subcommand of our service. In Listing 7-60, we have the rpc

subcommand onto the RPC service.

Listing 7-60. The RPC associations for retrieval service in retrieval_rpc_

deployment.yaml

command: ["./retrieval_svc", "--", "rpc"]

ports:

- name: rpc

 containerPort: {{ .Values.services.retrieval.rpc }}

 protocol: TCP

In addition, both of these need to have access to the database and will need that

DATABASE_URL we created in the secrets. In Listing 7-61, we use the secretKeyRef to

reference that secret and inject it into the environmental variable.

Listing 7-61. The env database reference for retrieval_rpc_deployment.yaml

- name: DATABASE_URL

 valueFrom:

 secretKeyRef:

 name: {{ template "iot.fullname" . }}

 key: databaseUrl

Database Migrations

Database migrations can occur in two ways; one is manually running against the

database itself. This is often how DBAs prefer, but it also requires coordination between

deployments, and there is no guarantee that the service you deployed is for the database

you created.

There is another way, and that is using the diesel migrations we created earlier. If you

recall when we ran diesel migrations earlier, we used a diesel cli to run the migrations.

This poses a few problems for us:

 1. The compiled binary we create does not contain the diesel cli.

 2. The compiled binary also doesn’t contain the migration files

themselves.

Chapter 7 Deployment

360

We could solve this by adding both of these things, but then we’d no longer have a

small from scratch container. Instead, we will use a diesel_migrations plug-in that will

wrap the migration files into our binary and allow us to use a subcommand to run the

migration. In Listing 7-62, we have the additional create file that we defined in Cargo.toml.

Listing 7-62. The diesel_migrations in our Cargo.toml

Needed to run diesel migrations

diesel_migrations = "1.4.0"

Now let’s add the subcommand to the main.rs in Listing 7-63 that will commit those

migrations.

Listing 7-63. The diesel migration subcommand in the main.rs

#[macro_use] extern crate diesel_migrations;

embed_migrations!("./migrations"); ①

fn subcommand_migrate(database_url: &str) -> MyResult<()> {

 use diesel::pg::PgConnection;

 use diesel::Connection;

 let conn = PgConnection::establish(&database_url)

 .expect(&format!("Error connecting to {}", database_url));

 info!("Running migrations");

 embedded_migrations::run_with_output(&conn, &mut std::io::stdout()) ②
 .chain_err(|| "Error running migrations")?;

 info!("Finished migrations");

 Ok(())

}

 ➀ Adds the migrations folder to be included into our binary.

 ➁ Runs the db migrations printing the output for the results; there is

also a run(conn) that will run without the output.

Chapter 7 Deployment

361

Now we have a retrieval_svc that can be deployed to our servers and be able to run

the migrations; where do we put the migrations before the service starts? We are going

to use what is called initContainers. The init containers are containers that can run

before the main container service starts. We will create one in Listing 7-64 that has an

initialization container that runs before the main application that starts up performing

the database migrations.

Listing 7-64. The diesel migration subcommand in the main.rs

initContainers:

- name: retrieval-migration

 image: "{{ .Values.services.retrieval.image.repository }}:{{ .Values.

services.retrieval.image.tag }}" ①
 imagePullPolicy: {{ .Values.imagePullPolicy }}

 command: ②
 - "retrieval_svc"

 - "--"

 - "migration"

 env:

 - name: DATABASE_URL

 valueFrom:

 secretKeyRef:

 name: {{ template "iot.fullname" . }}

 key: databaseUrl

 ➀ Uses the same container that we use for the retrieval service.

 ➁ Runs our subcommand for the migration.

While initContainers do run for each of your pods, database migrations should be

written that if they are run twice, you won’t have destructive results. You may have an

error (i.e., a create for a column that already exists) and that will be fine. But what will

mostly likely happen is one container will run it, and the next will notice it’s already run

(the migration) and won’t run it again.

Now we have a complete retrieval service that references the secret DATABASE_URL,

performs the migrations, and runs for the RPC and HTTP service. Also note we only run

this for the HTTP and not the RPC. You could have copied it there, but there is no reason

it’s fine to have it in just one, since we always deploy these services together because they

are in the same chart.

Chapter 7 Deployment

362

MQTT Service

MQTT is our last microservice we need to configure. This microservice for the most part

is like the retrieval service in configuration; the difference this time is the certs – the

certs we have stored in the secrets and we need to mount a drive to the application that

can referenced the secrets. To mount the secrets, we will define a volume for it, but then

define a secret for the volume. Note since this is not an actual mount to a real volume

but to the already allocated secrets, we do not have to create a PVC and can keep this as

a deployment. Listing 7-65 has the container portion of our service with the secrets and

referenced items.

Listing 7-65. The container portion of the mqtt_deployment.yaml

containers:

- name: {{ .Chart.Name }}

 image: "{{ .Values.services.mqtt.image.repository }}:{{ .Values.services.

mqtt.image.tag }}"

 imagePullPolicy: {{ .Values.services.mqtt.image.imagePullPolicy }}

 command: ["./mqtt_service"]

 ports:

 - name: http

 containerPort: {{ .Values.services.mqtt.port }}

 protocol: TCP

 livenessProbe:

 tcpSocket:

 port: http

 initialDelaySeconds: 3

 readinessProbe:

 tcpSocket:

 port: http

 initialDelaySeconds: 3

 env:

 - name: HTTP_SERVER_ADDR

 value: "{{ .Values.services.mqtt.host }}"

 - name: HTTP_PORT

 value: "{{ .Values.services.mqtt.port }}"

 - name: CLIENT_CRT

Chapter 7 Deployment

363

 value: "/etc/secrets/client.crt" ①
 - name: CLIENT_KEY

 value: "/etc/secrets/client.key"

 - name: ROOT_CA

 value: "/etc/secrets/root.ca"

 - name: SERVER_ADDR

 value: "{{ .Values.services.mqtt.host }}"

 - name: PORT

 value: "{{ .Values.services.mqtt.ssl }}"

 - name: RPC_SERVER

 value: "{{ template "retrieval_rpc.name" }}.{{ .Release.Namespace }}.

svc.cluster.local:{{ .Values.services.retrieval.rpc }}"

 - name: RPC_PORT

 value: "{{ .Values.services.retrieval.rpc }}"

 volumeMounts:

 - mountPath: "/etc/secrets" ②
 name: certs

 readOnly: true

 resources:

 {{- toYaml .Values.services.mqtt.resources | nindent 12 }}

volumes:

- name: certs ③
 secret:

 secretName: {{ template "iot.fullname" . }}

 ➀ Setting CLIENT_CRT like it was a normally mounted volume using the

name of the secret as the filename.

 ➁ Mounting the certs to a path that we used in our environmental

variable.

 ➂ The actual mount of the secret we create to cert, which we can then

reference a volumeMount.

Chapter 7 Deployment

364

Service

We have all our deployable pods configured; now we need to configure the services that

expose each of them. We will have four services exposed. Because the definition of the

services is small, we can keep them all in the same file, separating each definition with

a --- which will tell the deployer that it’s a new kind. All of the services have endpoints

that reach the outside world, so we all need to have them accessible. In Listing 7-66, we

have the listing for the MQTT service.

Listing 7-66. The MQTT service for the HTTP port on the service.yaml

apiVersion: v1

kind: Service

metadata:

 name: {{ template "mqtt.fullname" . }}

 labels:

 app.kubernetes.io/name: {{ include "mqtt.name" . }}

 app.kubernetes.io/instance: {{ .Release.Name }}

 app.kubernetes.io/version: {{ .Chart.Version | replace "+" "_" }}

 app.kubernetes.io/component: iot

 app.kubernetes.io/part-of: {{ template "mqtt.name" . }}

 app.kubernetes.io/managed-by: tiller

 helm.sh/chart: {{ .Chart.Name }}-{{ .Chart.Version | replace "+" "_" }}

spec:

 type: {{ .Values.services.mqtt.type }}

 ports:

 - port: {{ .Values.services.mqtt.port }}

 targetPort: http

 protocol: TCP

 name: http

 selector:

 app: {{ template "mqtt.fullname" . }}

 release: {{ .Release.Name }}

There is not a large amount of customizations for this; about the only thing you could

want to customize is if you wanted to use a NodePort for development vs. a ClusterIP,

then you would have added if statements there.

Chapter 7 Deployment

365

Ingress

Finally, the last part of our equation is the ingress controller. For our ingress, we are

forwarding to three endpoints:

• Retrieval service GraphQL endpoint

• MQTT HTTP endpoint

• Upload service endpoint

Remember the RPC endpoint is only routed internally so we don’t need to define

that in the ingress. Our ingress controller with the endpoint definitions is in Listing 7-67.

Listing 7-67. The MQTT service for the HTTP port on the service.yaml

{{- if .Values.ingress.enabled -}}

apiVersion: extensions/v1beta1

kind: Ingress

metadata:

 name: {{ template "iot.name" . }}

 namespace: {{ .Release.Namespace }}

 labels:

 app.kubernetes.io/name: {{ template "iot.name" . }}

 app.kubernetes.io/instance: {{ .Release.Name }}

 app.kubernetes.io/version: {{ .Chart.Version | replace "+" "_" }}

 app.kubernetes.io/component: iot

 app.kubernetes.io/part-of: {{ template "iot.name" . }}

 helm.sh/chart: {{ .Chart.Name }}-{{ .Chart.Version | replace "+" "_" }}

 app.kubernetes.io/managed-by: tiller

spec:

 rules:

 - host: {{ .Values.ingress.host }}

 http:

 paths:

 - path: /apim ①
 backend:

 serviceName: {{ template "mqtt.fullname" . }}

 servicePort: {{ .Values.services.mqtt.port }}

Chapter 7 Deployment

366

 - path: /api ②
 backend:

 serviceName: {{ template "upload.fullname" . }}

 servicePort: {{ .Values.services.upload.port }}

 - path: /graph ③
 backend:

 serviceName: {{ template "retrieval.fullname" . }}

 servicePort: {{ .Values.services.retrieval.port }}

{{- end -}}

 ➀ MQTT endpoint that is exposed so our IoT devices can access the MQ.

 ➁ The API endpoint for creating API calls like uploading files.

 ➂ The GraphQL exposed endpoint for querying comments and videos

and updating them.

Some final tips when using Kubernetes and Helm before we move on, when you are

confused whether to add or not have quotes – rule of thumb, you don’t quote integers,

but you ALWAYS should quote strings. With helm, you can always pipe through the

quote function to quote them (i.e., {{ .Values.SomeName | quote).

 Deploying Your Helm Chart
Finally, now that we have our Helm chart created, we can move on with deploying the

chart. The charts use the tiller application on the server we created earlier to deploy

the charts. Deploying the charts with helm will allow us to deploy multiple services at

one time and also allow us to roll back the services.

Starting in the deploy directory, let’s run through a couple commands and options.

The first is how to install the chart; there are two options – one is to treat it as a new

install and the other is to treat it as an upgrade to an existing install:

• helm -n iot install iot – Tells helm to install the iot application

to the Kubernetes server

• helm -n iot upgrade --install iot – Tells helm to upgrade the

iot application, installing it if it doesn’t exist

Chapter 7 Deployment

367

Let’s not run those commands quite yet though; let’s first add an option to make it

a dry run. You do not want to make such drastic changes without first seeing what your

Kubernetes files are going to look like. For that, there is the --dry-run command. When

applied, this option will tell us of any error with our helm templates with the creation.

(Note: This won’t tell us if the Kubernetes file is OK, just that the yaml is properly

formatted.) But we can combine that with --debug and get the entire picture of what

is going to be deployed. In Listing 7-68, we run the debug and dry run and print out a

partial output of the results; the full one would be pages long.

Listing 7-68. The dry run/debug run for our IOT application

➜ helm install iot --dry-run --debug ①

[debug] Created tunnel using local port: '52896'

[debug] SERVER: "127.0.0.1:52896"

[debug] Original chart version: ""

[debug] CHART PATH: /~joseph/work/rust-iot/code/full_example_app/deploy/iot

NAME: tan-joey ②
REVISION: 1

RELEASED: Mon Sep 16 12:12:54 2019

CHART: rust-iot-0.1.0

USER-SUPPLIED VALUES:

{}

COMPUTED VALUES: ③
ingress:

 enabled: true

 host: www.rust.iot

services:

 mqtt:

 host: 0.0.0.0

...

Source: rust_iot/templates/secret.yaml ④

Chapter 7 Deployment

368

apiVersion: v1

kind: Secret

metadata:

 name: tan-joey-rust-iot ⑤
type: Opaque

 ➀ Runs the debug/dry run over the helm charts.

 ➁ When the release name is not supplied, creates a dynamic release

name.

 ➂ Outputs the values from the Values.yaml.

 ➃ The Kubernetes template file that is being processed.

 ➄ One of the values that was computed.

The release name that is created is somewhat interesting and funny; this is created as

a combination of an [adjective]-[animal]; the joey here is in reference to the animal,

not a nickname for me. Every time you run it, you will get a new unique name; for

example, running it again, I got flailing-quetzal.

In Table 7-7, we run through a few more command-line options for helm runs.

Table 7-7. Helm run options

Option Description

--recreate- pods Instead of just updating the pods, this will recreate the pods. I generally

prefer this in development mode. In production, you wouldn’t want this as it

would cause greater downtime.

--set name=value If you want to override any of the settings that we defined in the Values.

yaml at creation time, you can add multiple of these setters as command-

line options.

--namespace [ns] this will set the namespace to deploy our chart to.

Chapter 7 Deployment

369

Now we can deploy the application; when you deploy it, you will also see the names

of all the pods, services, and so on that are created for it. In Listing 7-69, we deploy the

application to docker-for-desktop.

Listing 7-69. Deploy the helm cart to docker-for-desktop

➜ helm install iot

NAME: harping-mandrill

LAST DEPLOYED: Mon Sep 16 12:50:15 2019

NAMESPACE: default

STATUS: DEPLOYED

RESOURCES:

==> v1/Deployment

NAME READY UP-TO-DATE AVAILABLE AGE

harping-mandrill--retrieval 0/1 1 0 2s

harping-mandrill--retrieval-rpc 0/1 1 0 2s

harping-mandrill-mqtt 0/1 1 0 2s

==> v1/Pod(related)

NAME READY STATUS RESTARTS AGE

harping-mandrill--retrieval-6bfff44846-f8qf8 0/1 Init:0/1 0 2s

harping-mandrill--retrieval-rpc-64b9c65f68-dq8fx 0/1 ContainerCreating 0 2s

harping-mandrill--upload-0 0/1 Pending 0 2s

harping-mandrill-mqtt-58c86c4c55-5zhhn 0/1 ContainerCreating 0 2s

==> v1/Secret

NAME TYPE DATA AGE

harping-mandrill-rust-iot Opaque 4 2s

==> v1/Service

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

harping-mandrill--retrieval ClusterIP 10.101.89.29 <none> 3000/TCP 2s

harping-mandrill--retrieval-rpc ClusterIP 10.104.175.80 <none> 5555/TCP 2s

harping-mandrill--upload ClusterIP 10.101.136.241 <none> 3001/TCP 2s

harping-mandrill-mqtt ClusterIP 10.106.211.64 <none> 3010/TCP 2s

Chapter 7 Deployment

370

==> v1/StatefulSet

NAME READY AGE

harping-mandrill--upload 0/2 2s

==> v1beta1/Ingress

NAME HOSTS ADDRESS PORTS AGE

rust-iot www.rust.iot 80 2s

You will notice the release name is changed again. If you want to deploy the

application with your own release name, you put the name before the directory that

contains the charts like helm install CustomReleaseName iot.

And finally, you can check on the charts with helm list, which gives you the version

and the status of the deployment. Note this only tells you if the deployment worked,

but not the status of the deployed pods themselves. In Listing 7-70, we list the charts

installed.

Listing 7-70. List all the charts installed

➜ helm list

NAME REVISION UPDATED STATUS CHART

APP VERSION NAMESPACE

harping-mandrill 1 Mon Sep 16 12:50:15 2019 DEPLOYED rust-iot-0.1.0

1.0 default

Now if you want to delete this chart, you can do so by typing helm delete harping-

mandrill --purge; the purge in my experience is almost always necessary or the chart

won’t get fully deleted.

At this point, we now have all our Kubernetes charts made; you can run through and

test these locally. Now we just need to deploy this to the managed container system, not

on our local computers.

Chapter 7 Deployment

371

 Standing Up the System
We have all the scripts ready and have deployed to our local Kubernetes resources, but

this only helps us when running against the localhost. This provides us a great way to

test our Kubernetes scripts are working, but once that is verified, we want to deploy

externally with Kubernetes using helm charts to a container provider.

For most big and even smaller companies, the standard is to use AWS, Azure, or

GCP. All of these services offer a Kubernetes managed service, which will mean that your

Kubernetes instance will be up and running once you pay with little to no work from you.

And if you are doing this for your company or even small business, this is the obvious

option. The prices start at $50/month, and of course, the sky is the limit. But they do

allow ease to replicate across regions and areas.

Another option is to still use one of the big three, but set up your own Kubernetes

system on a smaller instance. The reason behind this is simply cost; you can get a micro

instance for about $10/month on AWS so the savings for the cloud-managed system is

great. However, this means you will have to set up your own control plane as well as the

replica nodes and also your own etcd and load balancers. Kubeadm is one of the most

common tools to use for it, and you can find instructions for it on the Kubernetes site

(https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/

install-kubeadm/). You can even use this to run Kubernetes off a Raspberry Pi or other

mini server in your house and is not a bad option for learning how Kubernetes works

and not thinking of it just as a black box. However, this is a Kubernetes section in a book

and not a Kubernetes book, so we aren’t going to do that.

What we want is managed Kubernetes like with the big companies, but not pay for

the big companies. One option you have is to sign up for a trial account with GCP; they

will give you a nice credit, but that won’t last. Now we are going to use a smaller provider

that still provides 99.99% uptimes. There are many smaller companies that provide a

managed Kubernetes at a lower cost; the one I’m picking for the book is DigitalOcean

(www.digitalocean.com). You can of course use whichever one you choose, but the

examples on how to set up and deploy to will be via DigitalOcean.

We will actually go back to using AWS later in this book for our lambda deployments

of Alexa services, but that’s later. In that case, I would have liked to have stayed with AWS,

but let’s be economical here.

Chapter 7 Deployment

https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/install-kubeadm/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/install-kubeadm/
http://www.digitalocean.com

372

 DigitalOcean
The #1 reason we are using DigitalOcean for our examples is price. At the time of the

writing, the price to use DigitalOcean is $10 for one CPU with 2 GB of memory and

50 GB of disk. Minimal configuration is one node, but having at least two is much more

preferred. In addition, if we want a managed Postgres database, that’s $15/month for

1 GB Ram, one CPU, and 10 GB of disk. A managed database is always preferred for

reliability and scalability. For development purposes, you can always skip that part and

deploy a Postgres instance directly to your cluster.

In this section, we are going to take the Kubernetes and helm scripts we created

early, set up the cluster in DigitalOcean, and deploy the cluster to Kubernetes.

This was created in the Fall of 2019, so the page could change when you actually read

this book. But it should be similar.

The first step is simple; go to www.digitalocean.com and log in. You can log in

with your Google account or your own account, but log in. Once you log in, you will be

promoted with a screen like in Figure 7-11. Click the Kubernetes link on the left.

Chapter 7 Deployment

http://www.digitalocean.com

373

Figure 7-11. DigitalOcean initial setup page

Once on this page, click the Create link at the top; this will start our Kubernetes node

creation. Once you have done that, you will see Figure 7-12.

Chapter 7 Deployment

374

In here we will select the latest Kubernetes version, followed by selecting your

region. This region should be where you are targeting your application, or for me, I just

picked closest to where I lived, San Francisco. For now, you can select the cheapest plan

and select 1 or 2 nodes. Enter a NODE POOL NAME; this should be something specific for

our application; I choose rust-iot-cluster and hit Create Cluster. You will then be

taken to a page that is in Figure 7-13.

Figure 7-12. DigitalOcean selecting data center and pools

Chapter 7 Deployment

375

You can verify your name and hit Continue; this will then take a bit as it spins up a

virtual machine; creates the Kubernetes control plane, kube-proxy, and so on; and spins

up the cluster. In Figure 7-14, you keep clicking the Continue.

Figure 7-13. Setting the name for your cluster

Chapter 7 Deployment

376

Eventually, you will get to step 3 that is reflected in Figure 7-15. This is an important

page as it will give us our Kubernetes config file that we need to download and install to

deploy Kubernetes and to use it in our CI/CD pipelines. Hit Continue and retrieve the

file. This config expires in a month, so it will need to be rotated. You can always log back

onto your application later to retrieve it if necessary.

Figure 7-14. Cluster initially created

Chapter 7 Deployment

377

 Register Your Domain

Finally, we need to tie a domain to our application. You can use whatever site including

digitalocean to register your domain; I tend to keep all my domains on dnsimple.com;

my instructions thus will be based on using it. For our application, I am registering

rustfortheiot.xyz; the reason I picked xyz was because it was fairly inexpensive.

Inside of the DigitalOcean application, you need to add the domain; in Figure 7-16, it

shows clicking the Domains tab and adding our new domain to the existing project.

Figure 7-15. Download the Kubernetes configuration file

Chapter 7 Deployment

378

Figure 7-16. Add the domain to the system

From there, it will give you three dns entries to modify your setup with:

ns1.digitalocean.com

ns2.digitalocean.com

ns3.digitalocean.com

Go back to dnsimple or whatever other site you are using and click the Domain; you

should see a page like in Figure 7-17.

Chapter 7 Deployment

379

Click Edit name servers, and update the names to reflect the DNS names that

digital ocean provided in Figure 7-18.

Figure 7-17. Edit the dns entry for your server

Chapter 7 Deployment

380

This will now allow our site to be routed to the Kubernetes application we set up.

Now you have everything set up and are ready to start deploying to DigitalOcean servers.

Figure 7-18. Set the dns entries to digital ocean

Chapter 7 Deployment

381

 Attaching to DigitalOcean Kubernetes
Before we set up and automate the process via Gitlab, we should test locally; in addition,

we are going to need to locally check the Kubernetes instance, read log files, and respond

to errors caused by outages. The CI/CD pipeline helps us but isn’t everything either.

To start, let’s take that kubeconfig you downloaded earlier; for me, the name was

rust-iot-cluster-kubeconfig.yaml; the following data will assume you have that

file in your home directory and are in it. The first step is let’s make sure the config file

works and you have a connection; in Listing 7-71, we make a connection to the cluster to

retrieve the pods.

Listing 7-71. Retrieve the pods for our DigitalOcean cluster

➜ k get pods --kubeconfig=rust-iot-cluster-kubeconfig.yaml ①
No resources found.

 ➀ Calling get pods passing in the kubeconfig for our downloaded file.

This results in No Resources found, which is expected since we haven’t deployed

anything to it yet. If instead you get an error like Unable to connect to the server:

x509: cannot validate certificate... , this indicates either you can’t reach the

server or invalid certificate. If this happens, make sure you have the right file or try

and download it again. Without passing in a namespace, this defaults to the default

namespace; try that command again with k get pods -n kube-system; you will receive

results like in Listing 7-72.

Listing 7-72. Retrieve the pods for our kube-system in DigitalOcean cluster

➜ k get pods --kubeconfig=rust-iot-cluster-kubeconfig.yaml -n kube-system

NAME READY STATUS RESTARTS AGE

cilium-operator-b8c856758-8lv6m 1/1 Running 2 15d

cilium-zl6zk 1/1 Running 0 15d

coredns-9d6bf9876-2lnzg 1/1 Running 0 15d

coredns-9d6bf9876-gn5ts 1/1 Running 0 15d

csi-do-node-k2mdn 2/2 Running 0 15d

do-node-agent-rczpw 1/1 Running 0 15d

kube-proxy-ltmjz 1/1 Running 0 15d

Chapter 7 Deployment

382

These are all our kube-system files that were automatically generated. Now we

don’t want to add kubeconfig every time we call the app we want to be able to simply

switch contexts when need be. Let’s add to our existing config. The kubectl will look at

the environmental variable KUBECONFIG for the location of the config files by default; if

that’s not populated, it will look at ~/.kube/config. What we need to do is overwrite that

config. This is actually pretty simple. We can configure the KUBECONFIG like you would a

PATH variable by putting multiple files on it. We can put the current config as well as our

new config on there. Then we run a kubectl command that will view the files, merge

them, and flatten them into one output. This is what combines the two configs into one

config. In Listing 7-73, we do all that and store the results into a new file.

Listing 7-73. Combine our configs and put the result into a new file

export KUBECONFIG=~/.kube/config:~/rust-iot-cluster-kubeconfig.yaml

kubectl config view --merge --flatten > ~/.kube/merged_kubeconfig

Open up and view the merged_kubeconfig file; it should contain your new cluster

from digital ocean as well as the existing docker-for-desktop one. If the file looks right,

you can replace your old config with the new one like we do in Listing 7-74.

Listing 7-74. Combine our configs and put the result into a new file

mv ~/.kube/config ~/.kube/config.bak ①
mv ~/.kube/merged_kubeconfig ~/.kube/config ②

 ➀ Always good to back up your existing config.

 ➁ Move your merged one into the new one.

Open a new window and you are good to go with testing.

ZSH and other bash shells can modify the prompt to include your git branch, rust

version, and even Kubernetes cluster you are using. While the Rust version is not that

necessary, I always find it supercritical to have the git branch and the cluster there

always. It becomes very useful in preventing you to do something on the wrong cluster

and killing something you shouldn’t.

Chapter 7 Deployment

383

We can list out the various contexts and switch between them via the kubectl

command line. In Listing 7-75, I view the various contexts and switch to our new digital

ocean one.

Listing 7-75. Viewing the various contexts and switching to the digital ocean

context

➜ k config get-contexts ①
CURRENT NAME CLUSTER AUTHINFO NAMESPACE

 do-sfo2-rust-iot-cluster do-sfo2-rust-iot-cluster do-sfo2-rust-iot-

cluster-admin

* docker-desktop docker-desktop docker-desktop

➜ k config use-context do-sfo2-rust-iot-cluster ②
Switched to context "do-sfo2-rust-iot-cluster".

➜ k config get-contexts ③
CURRENT NAME CLUSTER AUTHINFO NAMESPACE

 * do-sfo2-rust-iot-cluster do-sfo2-rust-iot-cluster o-sfo2-rust-iot-

cluster-admin

 docker-desktop docker-desktop docker-desktop

 ➀ Retrieve all the current contexts for the Kubernetes cluster. Note: The

current context is our docker-desktop.

 ➁ Set the current context to our DigitalOcean cluster.

 ➂ Now the current context is moved to the digital ocean.

Now we will be able to work against our DigitalOcean cluster.

Note If you have had Kubernetes installed previously and issue running or
connecting against the server, you could have different versions of client and
server Kubernetes. you can check your version with kubectl version. make
sure the major and minor are within one to two versions of age difference.

Chapter 7 Deployment

384

 Deploying to DigitalOcean
At this point, we have options how we deploy. The first is through the local command

line like we did for our docker-for-desktop, or you can start using the Gitlab CI/CD

pipeline. Obviously, the choice is we start using the helm locally and then deploy to

Gitlab CI/CD.

In addition, we aren’t going attach our Eventstore, mqtt, and postgres to the Gitlab

CI/CD.

 Setting Up Gitlab CI/CD Pipeline
In the end, there are many ways to deploy your application, with helm chart and docker

files though much of the hard part we’ve already done. This is really the easier part and

the one that’s most custom based on the user. I will take you through one example of

how to do it. This should be seen more as a guide than gospel since it will depend on

what you are using.

Deploying our applications is going to involve a two-step process:

 1. Create docker images for all our applications.

 2. Deploy your helm chart that references those images.

Fairly easy in theory. To run the Gitlab CI/CD pipeline, all you need to start is a

.gitlab-ci.yaml file located in the root directory of your Gitlab project. In your CI/CD,

you will need to define the various stages for the pipeline. For our application, we will

have four stages:

• Build MQTT docker image.

• Build upload docker image.

• Build retrieval docker image.

• Deploy helm chart to Kubernetes.

Let’s build the skeleton code in Listing 7-76 for the .gitlab-ci.yaml that we will

add to.

Chapter 7 Deployment

385

Listing 7-76. Skeleton code for .gitlab-ci.yml

stages:

- build-upload

- build-mqtt

- build-retrieval

- deploy

build-mqtt:

build-retrieval:

build-upload:

deploy:

 Build Docker Images

Let’s start with creating the docker images. We need docker to build our docker images,

but the Gitlab runners are running in docker, and Gitlab CI are docker containers

themselves. Luckily, there is an image we can use called Docker in Docker. Now our

stages will be able to have access to docker to build our docker images. To do this, you

have to add the docker:dind service; in Listing 7-77, we add the services.

Listing 7-77. Adding the docker in docker to .gitlab-ci.yml

should be docker:latest but can’t because of GITLAB reseasons

image: docker:18-git

services:

- docker:18-dind

- docker:dind

This takes care of running docker, but the next question is where to tag and where

to push the images to. You have two options. The first is that your Gitlab repo itself has

a built-in registry provided by gitlab. This can be useful as an intermediary depot. The

second is most managed Kubernetes instances have a repository you can access as well.

You can push the image there. The trick is if you push the image to gitlab, it requires no

extra security to do because you by default have permissions, but then your DigitalOcean

VM will need to have access to the repo, whereas if you push to DigitalOcean repo, you

will have to make sure it has permission to push to that repository. In Listing 7-78, we are

going to build for MQTT pushing to the gitlab repository.

Chapter 7 Deployment

386

Listing 7-78. Adding the “build-mqtt” to our .gitlab-ci.yml file

build-mqtt:

 stage: build-mqtt

 before_script:

 - cd code/full_example_app/mqtt_service

 - docker login -u $CI_REGISTRY_USER -p $CI_JOB_TOKEN $CI_REGISTRY

 script:

 - docker build -t registry.gitlab.com/nusairat/rust-cookbook/mqtt_service .

 - docker push registry.gitlab.com/nusairat/rust-cookbook/mqtt_service

 tags:

 - docker

Here you see build the service and then push the image to the repository; you can repeat

this for the other two services till they are complete. If you want to see where the images

are located, you can open your Gitlab project and on the side navigation go Packages ➤

Container Registry. For the free accounts, there is a 10 GB limit to the size of the repository.

But with scratch images, even if you save quite a few versions, you will be fine.

 Deploying the Helm Chart

Finally, we get around to deploying our application via the helm chart. Much how when

accessing your Kubernetes instance from your local you need a kube config, you will also

need the same for Gitlab. You also (in case of hacking) do not want to deploy your master

config file that you downloaded. Instead, we will create a service account that can access

the cluster and have cluster-admin privileges; at the same time, it also needs to be able

to interact with the tiller service. (please note tiller is only required with Helm 2.x and

below, if you are using the latest Helm 3.x and above this is not necessary) In Listing 7-79,

we will create our service account.

Listing 7-79. Adding a service account to our Kubernetes instance on digital ocean

➜ kubectl create serviceaccount --namespace kube-system tiller ①
serviceaccount/tiller created

➜ kubectl create clusterrolebinding tiller-cluster-rule \ ②
 --clusterrole=cluster-admin --serviceaccount=kube-system:tiller

clusterrolebinding.rbac.authorization.k8s.io/tiller-cluster-rule created

➜ helm init --upgrade --service-account tiller ③

Chapter 7 Deployment

387

 ➀ Creates the tiller account in the kube-system namespace.

 ➁ Defines a role that allows tiller to have access to all the necessary

permissions.

 ➂ Installs tiller into that namespace.

Afterward, you can access that service account and retrieve the kubeconfig for it. You will

take the contents of that file and store it in our Gitlab. On your menu, if you go to Settings ➤

CI/CD and then expand on variable, you will have an option set like in Figure 7-19.

Figure 7-19. Where to add the kube config

Here you can add the kubeconfig file; make sure it is not stored in Opaque or you

won’t be able to view it. With the kube config, we will be able to call helm from our

Gitlab instance and deploy the application like we were on our local. In Listing 7-80, we

grab the config as an environmental variable, save it to the .kubeconfig, and deploy our

application.

Listing 7-80. Adding the “deploy” to our .gitlab-ci.yml file

deploy:

 stage: deploy

 before_script:

 - apk add --update curl jq && rm -rf /var/cache/apk/*

 - "echo $KUBE_CONFIG > .kubeconfig"

 - alias helm="docker run -i --rm -v $(pwd):/apps -v $(pwd)/.kubeconfig:/

root/.kube/config alpine/helm:2.12.3"

Chapter 7 Deployment

388

 - helm init --client-only

 script:

 - >-

 helm upgrade --install --recreate-pods

 -- set services.upload.image.repository=registry.gitlab.com/nusairat/

rust-cookbook/upload_svc

 --set services.upload.image.tag=$IMAGE_TAG

 --set services.upload.image.pullPolicy=Always

 -- set services.mqtt.image.repository=registry.gitlab.com/nusairat/rust-

cookbook/mqtt_svc

 --set services.mqtt.image.tag=$IMAGE_TAG

 --set services.mqtt.image.pullPolicy=Always

 -- set services.retrieval.image.repository=registry.gitlab.com/nusairat/

rust-cookbook/retrieval_svc

 --set services.retrieval.image.tag=$IMAGE_TAG

 --set services.retrieval.image.pullPolicy=Always

 --set ingress.host=dev.rustfortheiot.xyz

 --set useSecret=false

 --namespace iot

 backend

 deploy/iot

 environment:

 name: dev

You will notice we overwrote many of the variables for our dev instance. The image

registry is probably the most obvious since we want to pull it from where our docker

builds were pushing it to. In addition, we set the pull policy to Always since we always

want to force a pull; this will be good for us in dev mode where our tag is always latest

and need to make sure we are always getting the latest one. You can now check in this

code, and Gitlab will start running the CI/CD automatically.

And there you have it, our fully functional deployed backend system. We will now

use this system going forward to interact with the Raspberry Pi we will start to create in

the next chapter.

Chapter 7 Deployment

389

 Summary
This chapter was a very long and encompassing chapter. We covered quite a few

topics that often are covered with a few books. However, deployment is a major piece

of any application, and I wanted to give you the basis to at least be able to go out and

understand more what you read. The Docker + Kubernetes + Helm is heavily used

throughout the industry to deploy applications, and Kubernetes support is only growing

among cloud providers. This is also our last chapter with a heavy backend focus. Starting

next chapter, we will move on to the Raspberry Pi device which will communicate with

the cloud. A note about this chapter, much of this was to help you deploying to a cloud

for production and other purposes. When completing the next chapters, it is probably

easier to just run the three microservices on your laptop/desktop and then have the Pi

communicate with them. This makes debugging much easier.

Chapter 7 Deployment

391
© Joseph Faisal Nusairat 2020
J. F. Nusairat, Rust for the IoT, https://doi.org/10.1007/978-1-4842-5860-6_8

CHAPTER 8

Raspberry Pi
Now that we have all the deployments of our code for the backend cloud services, it’s

time to dive into the Raspberry Pi (Pi) device itself. This next set of the book will all

revolve around coding to the Raspberry Pi device. We will perform a variety of coding

tasks on the Raspberry Pi mostly using libraries, some going bare metal. Much of this is

to give a glimpse of how we can create a connected environment between device, cloud,

and user.

For this first chapter, our major goal is to just get your Pi up and running. Much of the

code will be reused from samples from previous chapters. But we will go over enough

to make you feel sure-footed and able to run a basic application on the Pi. In this first

chapter, we are going to set up the Raspberry Pi in one of the faster ways possible, get it

up and running, and then start coding on it. In the last chapter, we will actually optimize

this process using buildroot.

 Goals
After completing this chapter, we will have the following ready and available:

 1. Install Ubuntu Server on our Raspberry Pi and have it working

with the local Wi-Fi.

 2. A Hello World application that is built targeting the Raspberry Pi

and runs on there.

 3. The start of the creation of our client application running on the

Pi, which we will build up on throughout the rest of the book.

https://doi.org/10.1007/978-1-4842-5860-6_8#DOI

392

 Raspberry Pi
Let’s start with discussing Raspberry Pi itself and what it is. Raspberry Pis are small

single-board devices originally developed in the United Kingdom by the Raspberry Pi

Foundation. They first came onto the stage in 2012 and were pretty much an instant hit.

Raspberry Pis filled a void for many different groups. For hobbyist, it was the perfect

device due to its small cost but powerful enough you could still easily use it as a small

server, serving up microservices or other small stand-alone applications. In fact, when

we first started writing this book, we thought of targeting a Raspberry Pi device for the

deployment server as opposed to the cloud. There are some secure advantages doing

this, since you are inside our own network, which would make it harder to hack. You

could do more of your own certificate creations. Then of course, there is the cost you

would have the one upfront cost of the Pi and not a monthly cost. In addition to the low

cost of the Pis, they can easily be put around the house to perform various functions,

often to do with either monitoring or voice interaction, which incidentally are the two

items we will be using it for as well.

In addition, they can often serve as prototyping for eventual larger more complex

projects. At the car startup I worked, they did just that. When you think about it not only

from a cost perspective but time perspective, it makes sense. If you have to prototype,

you are going to want the results as fast as possible. In addition, while your hardware

team is designing and creating the hardware revisions, you will want to start coding

some of the higher-level features as soon as possible. Low-level features may not

be compatible depending on what you are doing and the devices you are targeting.

But giving you quite a bit of a leg up and in a startup-minded development world,

minimizing cost till you get investment is always a good thing.

Let’s dive into creating our Raspberry Pi application.

 Create Raspberry Pi Image
In the first chapter, we laid out what you needed to purchase to follow along with this

book, until this point we haven’t used any of the parts. That all changes, so get your

Raspberry Pi kit out. In this section, we are going to unbox it, power it up, and install a

base software image on it that will connect to the Internet. This should give us the first

step in running our applications on the Pi.

Chapter 8 raspberry pi

393

 Unbox the Raspberry Pi
Assuming you purchased the Raspberry Pi and accessories we linked to in the first

chapter or an equivalent, we will now start to unbox and use it. Let’s start by reviewing

everything we need and will be using throughout the chapter.

Raspberry Pi Kit

The first is the Raspberry Pi kit itself; for this book, we are targeting the Raspberry Pi

4 with built-in Wi-Fi. The processor should be 64-bit architecture, and the speed and

and ram of it will vary depending on when you purchased it. But for the examples in the

book, I ran it off of a 1.4 GHz processor purchased in 2018. You should be fine along any

variant of that. The kit will most likely contain the following:

• The Raspberry Pi board

• Heat sinks + glue (or sticky tape on the sink)

• Power adapter

• Case

Some specifics may vary depending on the actual Amazon kit you buy, and even

though I’ve supplied the URL, the manufacturer may change the specifics. The basics of

what was listed earlier will be in all of them though.

As a reminder, the kit can be purchased at https://amzn.com/B07V5JTMV9 or any

equivalent by searching for “Raspberry Pi 4 kit”. This will be the board that we run much

of the IoT software.

SD Card

A 32 GB SD card comes with the preceding kit. This will be where we store the operating

system and the software for running the IoT device as well as storing any data before it

reaches the cloud. Raspberry Pis use a microSD card, meaning it won’t directly fit into

your computer even if it has an SD card slot. But the kit contains a USB adapter to read

the card. If you have an SD card slot reader on your computer, it may be easier to use a

microSD to SD adapter that you can purchase fairly inexpensively here: https://amzn.

com/B0047WZOOO.

Debug Cable

Lastly is the debugging cable; this is going to be necessary when we set up the server in

the beginning, and it’s just a useful tool to have for any debugging later on that is needed.

As a reminder, you can purchase this cable at https://amzn.com/B00QT7LQ88.

Chapter 8 raspberry pi

https://amzn.com/B07V5JTMV9
https://amzn.com/B0047WZOOO
https://amzn.com/B0047WZOOO
https://amzn.com/B00QT7LQ88

394

 Assembling Raspberry Pi
The Raspberry Pi itself is fairly easy to assemble; take the two heat sinks and they will

either have a sticky back tape to pull off or glue in the kit. If there is a sticky back tape,

take it off and put it on the two silver chips. If there is glue, you first place the glue on the

heat sink and then apply the heat sinks directly to the chips.

Once the heat sinks are attached, we can then put the board in the case and snap the

top. This gives us a nice little case without anything exposed and will also minimize our

risk of touching the board directly and having a static discharge.

In Figure 8-1, we have the finished product of the Pi 4 board with heat sinks

attached.

Figure 8-1. Shows the board with the heat sinks attached

Chapter 8 raspberry pi

395

Let’s take another look at the board; in Figure 8-2, I have an overview picture of

the board with various parts on the board labeled. Let’s go over what some of those

parts are.

Figure 8-2. Shows the board labeled by items (this is a Pi 3 board but close to the 4)

Let’s start on the top and work our way around the board:

• GPIO – Is an 85 mm general-purpose input/output set of integrated

circuits that we will use to integrate with the board. These are unused

by default, but we can use them to perform interactions with our board.

• Controller – The controller for the USB and Ethernet LAN ports.

• USB – On the side, we have two sets of two USB ports.

• Ethernet – The bottom is our 10/100 Ethernet LAN port.

Chapter 8 raspberry pi

396

• Audio – Is a 3.5 mm four-pole video and audio socket.

• CSI camera port – A port we can attach our camera to.

• HDMI – An HDMI port that will allow us to attach the board to a

monitor or TV.

• Micro USB power – A 5V micro USB that can be used to power the

board.

• MicroSD card – On the underside of the board is where we put the

card that we will create in a bit.

• Wireless – The wireless controller for the board. This runs the 2.4 GHz

and 5 GHz 802.11 Wireless LAN and Bluetooth-supported controller.

• Processor – The Broadcom BCM283780 Cortex-A57 64-bit SoC

1.4 GHz 1 GB Ram chip.

 GPIO

On the top of the board is the GPIO pins, which we will use to interface with the board

in this and later chapters. Each of those represents different pins that are used for

communication with the board, powering the board, or for grounding. In Figure 8-3, we

have a map of the GPIOs and what they represent.

Figure 8-3. Shows the GPIO layout of the board

Chapter 8 raspberry pi

397

You will notice the number 2 and 4 slots are 5V leads. These can be used to power the

peripherals on top or be used to actually power the board from an external source like

a USB. Another two interesting slots are the 8 and 10. These are the UART slots. UART

stands for Universal Asynchronous Receiver/Transmitter and is used to transmit data

between devices. The one lead transmits and the other receives serial data. The data is

transmitted asynchronously, so that means there is no clock signal to synchronize with.

We don’t use these much anymore for modern computers, but they used to be used for

mice, printers, and modems before we had USB.

We will use these though for our initial communication with the board before we

have our shell ready. At this point, you can attach your USB debug cable to the board.

Attach the cables to the following parts:

• Black cable – Is our ground cable and should be plugged

into the 6 pin

• White cable – Is our transmitter cable and should be plugged

into the 8 pin

• Green cable – Is our receiver cable and should be plugged

into the 10 pin

The end result is your cables should look like Figure 8-4.

Chapter 8 raspberry pi

398

Figure 8-4. Our debug cable attached

Chapter 8 raspberry pi

399

You could in addition attach the red cable to the 2 pin, but we are going to just plug

the board in since once we get it configured, we won’t need to directly attach again, but

in theory we could power the board from our computer.

We now have our board all set up and ready to be used; of course, nothing is on it

right now, so let’s take the microSD card format it and put an operating system on top

of it.

 OS Software
Let’s now get into the nuts and bolts in setting up our Raspberry Pi, getting the operating

system software installed. Much like buying your standard desktop computer, there are

many variants of operating systems to install. There is the standard Raspbian which is

the official operating system for all Raspberry Pis. There is also Mozilla OS, and even

Windows has a specialty Windows 10 IoT core dashboard; as you can imagine since you

are reading this book, Raspberry Pis are great for IoT devices. We are going to stick with

the standard out-of-the-box Raspbian for this application. Performing builds in future

chapters is a bit easier using Raspbian as well.

You can view all the possible operating systems you can install at www.raspberrypi.

org/downloads/. The top of the page has the Raspbian link we are going to select; the

output of that page looks like Figure 8-5.

Chapter 8 raspberry pi

http://www.raspberrypi.org/downloads/
http://www.raspberrypi.org/downloads/

400

Go ahead and click “Raspbian” link and scroll down a bit; you will see a screen that

looks like Figure 8-6 showing the three different Raspbian versions to select from.

Figure 8-5. The Raspberry Pi operating system list page

Chapter 8 raspberry pi

401

Figure 8-6. The various Raspbian installs

Our Pi won’t be designed to hook up to a monitor; this is going to run code that we

customize for it. For that case, all we need is the “Raspbian Buster Lite” version. Click the

Download like for the ZIP version and you should have downloaded a file that looks like

2020-02-13-raspbian-buster-lite.zip; the exact version may differ based on when

you have reached this page. Raspbian is a derivation of the 32-bit Debian operating

system, so many of the tools we use on Debian, we will use on Raspbian.

 Installing the Software

Once the file is downloaded, we will take it through a few steps:

 1. Unzip the compressed image.

 2. Wipe our microSD card.

 3. Install the image onto our microSD card.

Chapter 8 raspberry pi

402

Unpack the File

Once the file is downloaded, you can check the sha256sum to ensure the integrity of

the download. You can find the shasum on the same link we downloaded and then run

sha256sum on the file to verify the file. But assuming it is fine, let’s unzip it like we are

doing in Listing 8-1.

You can choose either the 18.04 or the 19.10 version; I would recommend the 18.04

because it will ensure the software you are writing to will be supported the longest.

Listing 8-1. Unzipping the Raspbian server

➜ unzip 2020-02-13-raspbian-buster-lite.zip

Archive: 2020-02-13-raspbian-buster-lite.zip

 inflating: 2020-02-13-raspbian-buster-lite.img

This unzips the file, and you will be left with an image file 2020-02-13-raspbian-

buster- lite.img.

Wipe and Initialize the SD Card

Now let’s get the card ready to run the OS on our Pi. The card you bought should come

blank, but too often they have drivers or other software on them usually for Windows

computers. We want to blank them out and start fresh. The following code will initialize

the disk but is specific for macOS using diskutil; the equivalent in Linux will be fdisk

(with some slightly different options).

Plug in your adapter and your SD card in the adapter. In Listing 8-2, we are going to

find where the device is attached to. Now your exact structure may look different than

mine, so we will try to find the similarities.

Listing 8-2. Getting the list of disks attached to the computer

➜ diskutil list

/dev/disk0 (internal, physical):

 #: TYPE NAME SIZE IDENTIFIER

 0: GUID_partition_scheme *500.3 GB disk0 ①
 1: EFI EFI 314.6 MB disk0s1

 2: Apple_APFS Container disk1 500.0 GB disk0s2

Chapter 8 raspberry pi

403

/dev/disk1 (synthesized):

 #: TYPE NAME SIZE IDENTIFIER

 0: APFS Container Scheme - +500.0 GB disk1

 Physical Store disk0s2

 1: APFS Volume Macintosh HD - Data 465.2 GB disk1s1 ②
 2: APFS Volume Preboot 104.2 MB disk1s2

 3: APFS Volume Recovery 1.0 GB disk1s3

 4: APFS Volume VM 8.6 GB disk1s4

 5: APFS Volume Macintosh HD 10.9 GB disk1s5

/dev/disk2 (disk image):

 #: TYPE NAME SIZE IDENTIFIER

 0: GUID_partition_scheme +2.8 TB disk2 ③
 1: EFI EFI 209.7 MB disk2s1

 2: Apple_HFS Time Machine Backups 2.8 TB disk2s2

/dev/disk4 (external, physical):

 #: TYPE NAME SIZE IDENTIFIER

 0: FDisk_partition_scheme *32.0 GB disk4 ④
 1: Windows_FAT_32 system-boot 268.4 MB disk4s1

 2: Linux 31.8 GB disk4s2

 ➀ Our main internal disk.

 ➁ The disk that contains your hard drive OS and so on.

 ➂ Time Machine drive if you had it attached.

 ➃ The SD card attached.

The contents of the SD card you have will depend on the exact layout of your disk

and what’s default software is on there. Some come completely blank, and others have

initialization software. The most important thing is to identify which disk you have; the

last thing you want to do is erase another disk. During this process, I recommend also

disconnecting any other external drive so as not to confuse yourself since the next few

steps are destructive.

It’s somewhat easy to spot the SD card on here by the size; you notice the 128.0 GB

which is the size of the SD card I purchased for this. The SD card is on /dev/disk4; you

will need this for the rest of the calls we are going to make.

Chapter 8 raspberry pi

404

Next, let’s erase the SD card and put a FAT32 filesystem on top of it instead. In

Listing 8-3, we erase the disk targeting /dev/disk4, installing FAT32 as the file system.

Remember this phase permanently erases the data, proceed at caution, and make sure

you have the right disk.

Listing 8-3. Erasing the SD card with FAT32 on top

➜ diskutil eraseDisk FAT32 EMPTY /dev/disk4

Started erase on disk4

Unmounting disk

Creating the partition map

Waiting for partitions to activate

Formatting disk4s2 as MS-DOS (FAT32) with name EMPTY

512 bytes per physical sector

/dev/rdisk4s2: 249610688 sectors in 3900167 FAT32 clusters (32768 bytes/cluster)

bps=512 spc=64 res=32 nft=2 mid=0xf8 spt=32 hds=255 hid=411648 drv=0x80

bsec=249671680 bspf=30471 rdcl=2 infs=1 bkbs=6

Mounting disk

Finished erase on disk4

At this point, the disk is erased and formatted to a FAT32 file system, but the disk is

still mounted to our directory structure. We will need to unmount it before we install the

image. In Listing 8-4, we unmount the disk.

Listing 8-4. Unmount the disk

➜ diskutil unmountDisk /dev/disk4

Unmount of all volumes on disk4 was successful

Instructions on Erasing on Linux
The preceding data shows how to perform this operation on the Mac, and the

following data will present how to perform this same series but on a Linux box:

- In order to list the disk contents, you will use "fdisk –l" which will

list all your disks (we will assume "/dev/disk4" is the location).

Chapter 8 raspberry pi

405

- Enter fdisk /dev/disk4" to put the console in an interactive

mode, selecting "d" to select the partition. You will then be given a

list of partitions to delete; if just one, select "1". Keep going through

the rest of the partitions till they are all deleted.

- Now we want to create a new partition, type "n" for new and then

"p" to create the primary partition. You will have to enter "1" to

make this the first partition and hit Enter. After that, it will ask you

to set the first and last cylinder; just click Enter to select the defaults.

When you are finally done, you will enter "w" to write the new

partition to the SD card. At this point, your partition should be ready.

- Type "unmount /dev/disk4" to unmount the disk and prepare it

for FAT32 creation.

- We will use "mkfs.vfat" to make a FAT32 partition. Enter "mkfs.

vfat -F 32 /dev/disk4" and that will put a FAT32 on your SD

card.

Install Image

Finally, let’s put the image on our application. In Listing 8-5, we will use the dd command

to install the image onto our SD card.

Listing 8-5. Installing the RasPi image onto the card

➜ sudo dd bs=4m if=./2020-02-13-raspbian-buster-lite.img of=/dev/disk4

conv=sync

739+1 records in

739+1 records out

3102821376 bytes transferred in 967.374066 secs (3207468 bytes/sec)

This will take a little bit of time, so be patient once you hit Enter. Also, depending on

if you are using Linux or OSX, there are a few errors you may get; these instructions are

for OSX, but a few errors and the resolutions you may find:

• dd: bs: illegal numeric value – Adjust your 4m to a smaller value;

conversely, one could have a larger value if you get no error. But 4

seemed to be fine for my needs.

Chapter 8 raspberry pi

406

• dd: unknown operand status – On the 4m, change it to capital M; on

Linux it usually wants a capital M and on OSX a lowercase m.

The “conv=sync” at the end is to make sure the writing is absolutely complete and

all the buffers flushed. This way, we don’t inject the SD card with some writing still

occurring. At this point, our card should have the base Pi image on it.

If you look at your list of volumes, you should have one that is called boot now. This

is where the files the Raspberry Pi will boot from. One that will be of importance to us

later is the config.txt. We will update it for certain configuration changes later. For

now, just put a blank file into the root of the boot volume called ssh (touch /Volumes/

boot/ssh if on a Mac). This file being there will allow us later to be able to ssh into the Pi.

 Final Setup Steps

Now that we have our SD card ready, it’s time to remove it and insert it into the Pi. The

SD card in your computer won’t fit, but the microSD card will. Remove it from the SD

card, and put it into the slot on the underside of the Pi. Once that’s inserted, plug in the

power cable to the USB power slot, and you can plug the power cable into the wall at this

point too, which is what we have in Figure 8-7.

Chapter 8 raspberry pi

407

Figure 8-7. The microSD card installed into our Raspberry Pi

Chapter 8 raspberry pi

408

We now have our Pi up and running, and if you plugged in an Ethernet cable, it

would be attached to the Internet. We could actually log into it that way as well. However,

we want it to work on Wi-Fi so we can use it anywhere in the house. Let’s take that USB

debug cable that’s already attached to your Pi and connect it to your computer. This will

allow us serial access onto the board. We will need to do a few things to get this serial

connector work since by default most apps don’t speak serially anymore. We will need a

serial terminal app.

 1. Determine the serial name for the USB plugged in.

 2. Install an application that will allow us virtual terminal access.

Plug the USB cable into your computer; the Pi can be on or off at this point. You will

be able to look for all the devices both virtual and connected under the /dev directory,

but this one will be tagged as usbserial. We will need to know the device name so that

we can tell our application which serial connection to connect to. In Listing 8-6, we do a

listing of our directory to find the name of all usbserials.

Listing 8-6. Find the USB serial connector

➜ ls -al /dev | grep cu.usbserial

crw-rw-rw- 1 root wheel 18, 13 Nov 2 18:46 cu.usbserial-14340

Assuming you only have one connected, you will only have one entry to contend

with. If you get more, disconnect other USB serial devices. Now let’s install an

application that will let us perform the serial connections. There are two different

applications we can install, screen or minicom; for our purposes, let’s install screen; you

can do this by these:

• On OSX – brew install screen

• On Linux – sudo apt-get install screen

We will now connect to the port (you can do this while the Pi is off, just nothing will

show). The screen command takes two parameters: the connection and a baud rate; the

baud rate for our Pi is 115200. Call the command screen /dev/cu.usbserial-14340

115200 from a terminal window (at this point, make sure you are plugged in; if not, you

will just see a blank screen). Now you will see a terminal screen like in Figure 8-8. Since

this is our first time with the new OS, you may see quite a bit of verbose messages before

we get to a prompt.

Chapter 8 raspberry pi

409

Figure 8-8. Screen capture from USB cable debug login

In order to log in, you will use the default username pi and the password `raspberry`;

after your first login, you should change your password. That initial login screen should

look like Listing 8-7.

Make sure the terminal screen is on your primary screen; I had issues with the

password accepting when not on the primary screen.

Listing 8-7. Login screen on your initial logging to the Raspberry Pi

Raspbian GNU/Linux 10 raspberrypi tty1

raspberypi login: pi

Password:

Linux raspberry pi 4

pi@raspberrypi:~ $ passwd

Changing password for pi.

Current password:

New password:

Retype new password:

passwd: password updated successfully

pi@raspberrypi:~$

Chapter 8 raspberry pi

410

At this point, we can quickly check the status of our Internet connection with the

command ip address; in Listing 8-8, we run the command with the following output.

Listing 8-8. Checking the connection status of Internet-connected devices

pi@raspberrypi:~$ ip address

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group

default qlen 1000

 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

 inet 127.0.0.1/8 scope host lo

 valid_lft forever preferred_lft forever

 inet6 ::1/128 scope host

 valid_lft forever preferred_lft forever

2: eth0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc fq_codel state

DOWN group default qlen 1000

 link/ether b8:27:eb:5b:1e:80 brd ff:ff:ff:ff:ff:ff

3: wlan0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN group

default qlen 1000

 link/ether b8:27:eb:0e:4b:d5 brd ff:ff:ff:ff:ff:ff

pi@raspberrypi:~$

Meta-Z for help | 115200 8N1 |

You will notice that while we have a wireless connection with wlan0, we have no

actual IP address; that is because we have not configured it to log into your Wi-Fi router.

Set Up Wi-Fi

Let’s set up the wireless router; now these set of instructions will assume you have a

password protection on your home router. This will be a two-step process; the first step

will be to add a file that contains our wireless SSID and the password. The second step

will be to then reboot the Pi to have everything take effect.

First things first – we are going to update the cloud initialization file /etc/wpa_

supplicant/wpa_supplicant.conf to store our wireless connection information. The

file may have a few lines of details in it; we are going to add network configurations to

it for our wireless Ethernet settings; you will have to log in as sudo (sudo su - is a good

way to get into super user mode) and update the file so it looks like Listing 8-9.

Chapter 8 raspberry pi

411

Listing 8-9. Creating our wireless connection file

pi@raspberrypi:~$ sudo su -

pi@raspberrypi:~$ vi /etc/wpa_supplicant/wpa_supplicant.conf

network={

 ssid="Nusairat Wireless" ①
 psk="testingPassword" ②
}

 ➀ Is the name of your wireless SSID?

 ➁ Is the password for your wireless SSID (mine isn’t really just a

password; it’s 1-2-3-4)?

At this point, you can reboot the Pi with the command reboot and then log back

in. Now when you do ip address, you should see an actual ip address; try performing

a ping google.com to verify you are reaching the Internet. Also make note of your IP

address; we will use that later.

Now if that doesn’t work, it could be because you have a block on your wireless

connection. Log in as sudo and run rfkill -list; if you see anything marked “yes”

under the Wireless LAN, we are going to need to unblock it. On the version I had, there

was a soft block on the Wireless LAN; thus, we couldn’t start up the wireless connection.

In order to remove that block, run rfkill unblock 0 to unblock it, and now let’s start up

the Wireless LAN with ifconfig wlan0 up. I’ve put these commands into Listing 8-10

to make it easier to follow along and try. Now if you reboot, your wireless connection

should be up and ready to use.

Listing 8-10. Contents of wpa-wlan0.conf

root@ubuntu:~# sudo su -

pi@raspberrypi:~ $ rfkill list

0: phy0: Wireless LAN

 Soft blocked: yes

 Hard blocked: no

1: hci0: Bluetooth

 Soft blocked: no

 Hard blocked: no

Chapter 8 raspberry pi

412

pi@raspberrypi:~ $ rfkill unblock 0

pi@raspberrypi:~ $ ifconfig wlan0 up

pi@raspberrypi:~ $ reboot

OK, so now we have a Pi that has Internet access and importantly local access. Now

we will be able to ditch the USB serial cable and log directly onto the board. (Note:

The debugging cable can still come in handy, and you don’t have to worry about SSH

timeouts either.)

Setup SSH Access

You can now try to SSH into the box on your own; simply type ssh ubuntu@<the ip you

wrote down earlier>. We can obviously do this by using the IP address and using the

password each time, but this can get quite tedious over time.

Let’s do a few things to make our life easier. First off, the IP address (the one I asked

you to remember) that’s hard to remember every time, let’s give ourselves a shortcut

for it in. In your /etc/hosts file, you can add host names to map to IP addresses.

In Listing 8- 11, I map pi to the ip address and add that entry to /etc/hosts file.

(Note: You will have to do sudo vi /etc/hosts to edit it.)

Listing 8-11. Add pi to your /ets/hosts

pi 192.168.7.70

Now in order to ssh to the box, all we have to do is ssh ubuntu@pi; you can go

ahead and try it, but unfortunately, we still have to enter our password, and that can be

annoying itself. This will become even more annoying as we make builds and send them

to the Pi for testing. Let’s fix this by telling our Pi that the public key from our computer

has access to the Ubuntu account on the Pi always. If you use Gitlab or any git instance,

you probably have your public key created already. If you have, just skip to “Update

Authorized Keys”; if you don’t, read on and we will set up the public key. If you aren’t

sure if you have a public key, perform ls ~/.ssh, and if you get no files returned, then

you don’t, and we will need to set it up.

Generating a public key on a Linux/OSX is fairly simple and identical; there are

luckily built-in commands to create the keys. You can use the command ssh-keygen to

generate the key; I would save it in the default location; if not, the rest of the instructions

won’t work. But now, you can run cat ~/.ssh/id_rsa.pub and should have your keys

installed.

Chapter 8 raspberry pi

413

Update Authorized Keys
Now that we have a key, we are going to copy this over to the Pi and store it in the ~/.

ssh/authorized_keys location. This will tell the server that any request with that key as

its SSH key will be authorized without requiring login. In Listing 8-12, get the contents of

our local id_rsa.pub and copy it over to the Pi.

Listing 8-12. Run this command from your computer to the Pi

~ ➜ ssh-copy-id -i ~/.ssh/id_rsa.pub pi@pi

The authenticity of host 'pi (192.168.7.70)' can't be established.

ECDSA key fingerprint is SHA256:UnLvF5X/5yFzGgGFkM0i7DK4lOR3aU3SH+okDAySf4c.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added 'pi' (ECDSA) to the list of known hosts.

pi@pi's password:

Number of key(s) added: 1

Now try logging into the machine, with: "ssh 'pi@pi'"

and check to make sure that only the key(s) you wanted were added.

You will have to enter the password one last time in there. But after this is done from

your computer, run ssh ubuntu@pi, and you will be able to access your Pi without any

password or remembering the IP address each time. Do remember though if the Pi’s IP

ever changes, you will have to update your /etc/hosts. Now that we have the Pi ready,

let’s start installing software.

 Client Application
Now that we have the Pi all set up and we can log onto it, let’s start to get code written

to go on the Raspberry Pi device. We are going to write two applications for this

section. The first one is a simple hello world, just to see how a simple application

works on the Pi. The second will be the start of our full-fledged application.

Chapter 8 raspberry pi

414

 Hello World Application
Let’s start with the simple hello world application. It’s our basic hello world that gets

created when we run cargo new hello-world. Go ahead and create one right now; our

issues are going to be in deploying, not creating the application. In Listing 8-13, we will

build the application and copy it the Raspberry Pi.

Listing 8-13. Build Hello World and copy it to the Pi

➜ cargo build ①
 Finished dev [unoptimized + debuginfo] target(s) in 0.06s

➜ scp target/debug/hello-world ubuntu@pi:/home/ubuntu/hello-world ②

 ➀ Build our hello world application.

 ➁ Copy the created target to the Raspberry Pi home directory for

Ubuntu.

Now that the file is there, open up another terminal window, ssh into the box, and

run the application. In Listing 8-14, you will see the result of that action.

Listing 8-14. SSH and run the Hello World on the Pi

➜ ssh ubuntu@pi

Welcome to Ubuntu 19.10 (GNU/Linux 5.3.0-1007-raspi2 aarch64)

ubuntu@ubuntu:~$./hello-world

-bash: ./hello-world: cannot execute binary file: Exec format error

Well that didn’t work, did it? This should not seem like too much of a surprise if you

understand Rust; like most compiled languages, they are targeted to a platform. We will

need to target this for Raspberry Pi.

 Cross Compiling

With rustup, we can cross compile our applications to work on other systems, and in this

case, we are going to target the Raspberry Pi Ubuntu system. In Listing 8-15, we are going

to add and target armv7-unknown-linux-musleabihf.

Chapter 8 raspberry pi

415

Listing 8-15. Installing the armv7-unknown-linux-musleabihf target

➜ rustup target add armv7-unknown-linux-musleabihf

info: downloading component 'rust-std' for 'armv7-unknown-linux-musleabihf'

 12.6 MiB / 12.6 MiB (100 %) 6.7 MiB/s in 2s ETA: 0s

info: installing component 'rust-std' for 'armv7-unknown-linux-musleabihf'

If you are using a Windows computer, run rustup target add armv7-unknown-

linux- gnueabihf. Now that the target is installed, we need to define it as a possible

target to use for the application that will also define the linker to use. You can define the

targets to build in ~/.cargo/config. In Listing 8-16, we define the linker to use.

Listing 8-16. Defining the linker in .cargo/config

[target.armv7-unknown-linux-musleabihf]

linker = "arm-linux-gnueabihf-ld"

Now what does all this mean? The names? The linker? What we are defining is the

cross compiler we are going to use to create a secondary target to build the application.

Let’s take a look at the name of the linker we added. This name isn’t random; it’s actually

a specific name that makes up four different attributes that are put together in a format

of {arch}-{vendor}-{sys}-{abi}1:

• arm – The architecture we are targeting. Raspberry Pis use an ARMv7

development board.

• vendor – The vendor, in many cases, is optional; in those cases, it is

marked as unknown.

• sys – The system we are compiling to, since we are deploying it to an

Ubuntu Linux system, “linux”.

• abi – The system that indicates the C library we are using for the

cross compiling. In our case, it is the Musl GCC cross compiler; if you

want more information on this library, you can read about it here:

https://wiki.musl-libc.org/getting-started.html.

1 https://github.com/japaric/rust-cross#terminology

Chapter 8 raspberry pi

https://wiki.musl-libc.org/getting-started.html
https://github.com/japaric/rust-cross#terminology

416

We can build this against that target by adding the flag --target armv7-unknown-

linux- musleabihf to our cargo build. If we did this, we would get the error in Listing 8-17.

Listing 8-17. Defining the linker in .cargo/config

➜ cargo build --release --target armv7-unknown-linux-musleabihf

 Compiling hello v0.1.0 (/Users/jnusairat/temp/hello)

error: linker `arm-linux-gnueabihf-ld` not found

 |

 = note: No such file or directory (os error 2)

error: aborting due to previous error

error: Could not compile `hello`.

To learn more, run the command again with --verbose.

This error is because of our indirect use of the ring crate; the ring crate is used for

cryptographic operations and is fairly a common library to use for any type of certificate

use or other crypto functions. This software uses a mixture of Rust and C code, which means

in order to compile, you will need a C cross compiler. To that end, we will have to add

musl-gcc. Let’s install the cross compilers. In Table 8-1, we list the commands for installing

on Linux, OSX, and Windows (please note I only have a Mac so that’s what I tried it on).

Table 8-1. GCC cross compilers for arm

System Command

OsX brew install arm-linux-gnueabihf-binutils

Linux sudo apt-get install gcc-arm-linux-gnueabi

Windows Will need to install the raspberry pi tool chain from

https://gnutoolchains.com/raspberry/.

Run the command based on the computer you are on. Now that you have the tools

installed, let’s try to rebuild the application. In Listing 8-18, we rerun the builder.

Chapter 8 raspberry pi

https://gnutoolchains.com/raspberry/

417

Listing 8-18. Defining the linker in .cargo/config

➜ cargo build --release --target armv7-unknown-linux-musleabihf

 Compiling hello-world v0.1.0 (/Users/joseph/Library/Mobile Documents/

com~apple~CloudDocs/work/rust-iot/code/ch08/hello-world)

 Finished release [optimized] target(s) in 4.57s

➜ ls -al target/armv7-unknown-linux-musleabihf/release/hello-world

-rwxr-xr-x 2 joseph staff 2774584 Nov 4 19:02 target/armv7-unknown-

linux-musleabihf/release/hello-world

Success! You will also notice I compiled for a release profile; I do this because I

wanted an optimized build, and also we haven’t defined anything yet for a dev profile

(but you could have just as easily removed the --release tag). You will notice this file

is located at target/armv7-unknown-linux-musleabihf/release/hello-world vs. our

usual target/debug; we can build to multiple targets, and they would each reside in

their corresponding directories.

Now in Listing 8-19, let’s copy this to our Raspberry Pi and run the hello world, just

to make sure we’ve done everything correct.

Listing 8-19. Copying over our Hello World to the Raspberry Pi

➜ scp target/armv7-unknown-linux-musleabihf/release/hello-world ubuntu

@pi:/home/ubuntu/hello-world ①

hello-world

100% 2710KB 4.0MB/s 00:00

➜ ssh ubuntu@pi ②

ubuntu@ubuntu:~$./hello-world ③
Hello, world!

 ➀ Copy over the release to the home directory.

 ➁ SSH to the Pi.

 ➂ Run the Hello World app successfully.

Chapter 8 raspberry pi

418

Success again, we have the Hello World application working on a Pi that was

compiled from our OS. There is one final set of installs we need to do before we can

continue though, and while it wasn’t necessary for the Hello World application, it will be

necessary when we compile our bigger application. This is basically further musl files for

cross compilation (mostly due to our MQTT crates). In Table 8-2, I have the instructions

for OSX and Linux.

Table 8-2. Further MUSL libraries that need to be installed

System Command

OsX brew install Marioschwalbe/gcc-musl-cross/gcc-musl- cross

Linux sudo apt install musl:i386=1.1.19-1

Please note the installation will take some time, so be patient during the download

and install process. For OSX, you may add the --verbose flag if you want to make sure

your installer is working.

 Developing the Client Application
Now that we have our hello world deploying, let’s get to something more complex, the

start of our MQ client application. We will be creating two applications on the Raspberry

Pi that will learn how to communicate with each other. The first client application will be

the rasp-pi-mq, and as the name sounds, this will deal with our MQTT server. We broke

these two applications up for a few reasons: one is the resilience we wanted of the MQ

application since it has to handle most of the communication with the outside world.

And the other reason is for practice of having two applications communicate on the

same device together (the techniques here are different than having two microservices

communicate with each other). Much of the code we are going to use in this chapter

has been created before, so we will only repeat what is necessary (but all of the source

code is available for the book on the accompanying site). For our first application, we are

going to create an application that runs continuously and sends a heartbeat back to the

server at a predefined interval. While this is a simple case, it will give us much of what we

need to go with on future chapters.

Chapter 8 raspberry pi

419

To make it easier to figure out what we are doing, let’s define the requirements:

 1. Have the Pi look up a UUID of the device that we will create later at

provisioning but will use this for determining uniqueness of a device.

 2. Upload all our certificates necessary to communicate to the server.

 3. Create a heartbeat to run at interval.

 4. Set up to run from the command line.

Much of this will be from code we have used before; others will be new code; I will go

into the necessary details when necessary. Obviously though the big difference is before

we were writing code to receive data, and here we are sending data for the heartbeat.

Start by setting up your basic application with the standard loggers we have used before.

This is going to require using a few standard crates that we’ve used in other pages; these

are in Listing 8-20.

Listing 8-20. Create a UUID in /var/uuid

log = "0.4.5"

pretty_env_logger = "0.4.0"

error-chain = "0.12.2"

clap = "2.32.0"

To find relative directory

shellexpand = "1.1.1"

In addition, you can set up your main method with the loggers we used before like in

Listing 8-21. Most of these seem familiar; I’m just repeating it here to make sure we are

all on the same page.

Listing 8-21. The start of our main method

fn main() {

 env::set_var("RUST_LOG", env::var_os("RUST_LOG").unwrap_or_else(||

"info".into()));

 pretty_env_logger::init();

 info!("Starting Up MQTT Manager on Pi ...");

}

Chapter 8 raspberry pi

420

 Creating UUID

The initial application is set up, but we are going to need to have a few files exist on the

board. If you recall earlier, we need to have each device have its own unique UUID; in

theory, these won’t change even as the software changes. For now, we just need to hard-

code a value to a specific location; that location for us will be /var/uuuid. Let’s first get a

UUID; the easiest way to do that is to go to the command line and type uuidgen. This will

create a new UUID for you; store that into the file /var/uuid on your Pi (if you do

not have `uuidgen installed, you can also generate a number at www.uuidgenerator.net/).

In Listing 8-22, I’ve copied my value into it on the Pi.

Listing 8-22. Create a UUID in /var/uuid

pi@raspberrypi:~ $ sudo apt-get update

pi@raspberrypi:~ $ sudo apt-get install uuid-runtime

Reading package lists... Done

Building dependency tree

...

pi@raspberrypi:~ $ sudo touch /var/uuid

pi@raspberrypi:~ $ sudo chmod 666 /var/uuid

pi@raspberrypi:~ $ uuidgen > /var/uuid

root@ubuntu:~# cat /var/uuid

93c1dfd9-cc07-4f14-aa3c-07f17b850039

Now that we have the UUID on the board, let’s retrieve it from the device on startup

so we can use the UUID to send over the MQ. In order to do that, we will read the file

from the Pi and then parse the string into a UUID object. In Listing 8-23, we parse this

object wrapping it in a result return.

Listing 8-23. Retrieving the UUID from the device

 const UUID_LOCATION: &str = "/var/uuid";

 fn read_device_id() -> MyResult<Uuid> {

 use std::fs;

 let uuid_str = fs::read_to_string(UUID_LOCATION.to_string())?; ①

 let uuid = Uuid::parse_str(uuid_str.trim()).unwrap(); ②

Chapter 8 raspberry pi

http://www.uuidgenerator.net/

421

 debug!("Device UUID :: {:?}", uuid);

 Ok(uuid)

 }

 ➀ Reads the contents of the file into a String.

 ➁ Parses the string into a Uuid struct.

With the method in our main.rs, we can use the following code to our main()

function to capture the UUID:

let uuid = read_device_id().chain_err(|| "No device id file found").unwrap();

 Transferring Certificates

Next, we need to get all those device certificates we created in the previous chapter and

store them to the device. If you recall, there are three files we need for the MQ to work

with an SSL connection:

• Client certificate

• Client key

• Root certificate

In Listing 8-24, we copy those files from ~/book_certs to the /home/pi directory to

use for our application.

Listing 8-24. SCP the certificate files to the Pi

➜ scp ~/book_certs/PiDevice.pem pi@pi:/home/pi/PiDevice.pem

PiDevice.pem 100% 1135 47.6KB/s 00:00

➜ scp ~/book_certs/PiDevice.key pi@pi:/home/pi/PiDevice.key

PiDevice.key 100% 1675 136.2KB/s 00:00

➜ scp ~/book_certs/RustIOTRootCA.pem pi@pi:/home/pi/RustIOTRootCA.pem

RustIOTRootCA.pem 100% 1168 68.2KB/s 00:00

 Setting Up Arguments

Now that we have our files on board, let’s think about what arguments we are going to

need for this application to make it work both now and in the future. We are going to

have the server do two things: one contact our endpoints via MQTT for sending and

receiving heartbeats and requests. In addition, we will need https endpoints to perform

direct queries and to upload and download files.

Chapter 8 raspberry pi

422

It’s good to remember the MQ and the HTTPS endpoints work hand in hand; the MQ

provides us a way to receive commands from the Web, but to also transmit data when

needed too, while the HTTPS is for more immediate queries or pushes of data.

To that end, we will need seven arguments passed to this application:

 1. MQ client certificate

 2. MQ client key

 3. Root certificate

 4. MQ server address

 5. MQ server port

 6. HTTPS server

 7. HTTPS port

The final two we won’t use in this chapter, but we will use later on. We’ve gone over

creating arguments a few times so we don’t need to cover how to do each one; the two

things I do want to show is the actual call to set up the argument matchers and the short

name to variable; that way, you have a reference for what I’m using when I reference

them in examples later in the chapter. In Listing 8-25, we have the command_line_args

method to get all the command-line arguments.

Listing 8-25. Parsing all the command-line arguments in src/main.rs

fn command_line_args() -> ArgMatches<'static> {

 App::new(APP_TITLE)

 .version(env!("CARGO_PKG_VERSION"))

 .author(env!("CARGO_PKG_AUTHORS"))

 .about(APP_DESCRIPTION)

 .setting(AppSettings::ColoredHelp)

 .arg(args::client_crt::declare_arg())

 .arg(args::client_key::declare_arg())

 .arg(args::rootca::declare_arg())

 .arg(args::server::declare_arg())

 .arg(args::port::declare_arg())

 .get_matches()

}

Chapter 8 raspberry pi

423

And in Table 8-3, we list the command-line values to names that we are creating.

Table 8-3. Command-line arguments for the Rasp Pi MQ app

Name Short Value

Client cert -c

Client key -k

root Ca -r

server -s

port -p

http server -e

http port -h

 Creating the Heartbeat

OK, now that we have the basics out of the way, let’s get into something fun, creating

the heartbeat. Calling the heartbeat isn’t too hard, but it does require us to remember

Rust’s borrowing model. To do so, let’s start with the call from the main method using

the arguments we created before. In the main() method, we are going to make the call

in Listing 8-26.

Listing 8-26. Calls the start_heartbeat function in src/main.rs

start_hearbeat(&matches, &uuid);

In here, we are passing a reference to the matches because we will need the matches

when we expose other calls. In addition, we clone the Uuid; we are going to have to clone

it a few times to use it around, but it’s small so it won’t add much to the stack.

Now let’s take a look at the start_heartbeat in Listing 8-27 which will get all the

objects we need from the matches.

Chapter 8 raspberry pi

424

Listing 8-27. The start_heartbeat function in src/main.rs

fn start_hearbeat(matches: &ArgMatches, uuid: &Uuid,) {

 let server = matches.value_of(args::server::NAME).unwrap().to_string();

 let port = matches.value_of(args::port::NAME).unwrap().parse::<u16>().unwrap();

 let client_crt = matches.value_of(args::client_crt::NAME).unwrap().to_string();

 let client_key = matches.value_of(args::client_key::NAME).unwrap().to_string();

 let rootca = matches.value_of(args::rootca::NAME).unwrap().to_string();

 heartbeat::start(uuid.clone(), server, port, client_crt, client_key, rootca);

}

Here we will retrieve all the values from the matches and set them to local variables

that we can then pass in to the heartbeat::run function. So far, it’s pretty normal. We

are going to create some methods in the heartbeat module. Before we dive into it too

much, what we have to remember is we are going to be setting up multiple threads

to occur because we are looping infinitely. We will need to wrap the variables in the

std::sync::Arc to keep them using the heap memory instead. In addition, we will also

be making use of tokio timers to do the interval looping, to set the application to send

heartbeats every hour. Let’s take a look at this code in Listing 8-28 and then dissect it

more after.

Listing 8-28. The heartbeat::run function in src/heartbeat.rs

use tokio::time::{interval_at, Duration, Instant}; ①

use uuid::Uuid;

use crate::mqtt::{App, MqttClientConfig};

use crate::mqtt::client::send as client_send; ②
use log::info;

use std::sync::Arc;

const INTERVAL_IN_SECONDS: u64 = 60 * 60; ③

#[tokio::main] ④
pub async fn start(uuid: Uuid, server: String, port: u16,

 crt: String, key: String, ca: String) -> Result<(), Box<dyn

std::error::Error>> {

Chapter 8 raspberry pi

425

 info!("Setup and start our MQ ...");

 run(uuid, server, port, crt, key, ca);

 Ok(())

}

fn run(uuid: Uuid, server: String, port: u16,

 crt: String, key: String, ca: String) {

 let config = MqttClientConfig { ⑤
 ca_crt: ca,

 server_crt: crt,

 server_key: key,

 mqtt_server: server,

 mqtt_port: port,

 uuid: uuid.to_string()

 };

 let record_config = config.clone();

 let mut interval = interval_at(Instant::now(), ⑥
 Duration::from_secs(INTERVAL_IN_SECONDS)); ⑦

 tokio::spawn(async move {

 loop {

 interval.tick().await;

 send(&config, &uuid); ⑧
 }

 });

 crate::actions::recording::monitor(&record_config, &uuid);

}

fn send(config: &MqttClientConfig, uuid: &Uuid) { ⑨
 info!("Send Heartbeat for {}", uuid);

 let app = App { uuid: uuid, status: 0, msg: "Everything is great ..",

peripherals: vec!["Camera", "Sense HAT"]};

 client_send(config, app);

}

Chapter 8 raspberry pi

426

 ➀ Uses the tokio timer.

 ➁ Uses the MQTT application and Config client we created before.

 ➂ Sets our interval in seconds; this will set up the interval for one hour.

 ➃ Starts up our Async via tokio.

 ➄ Creates our MqttClientConfig object for referencing the data.

 ➅ Creates an interval that will start immediately.

 ➆ And will fire every hour.

 ➇ The task that will be run each hour is sending a message to the

heartbeat.

 ⑨ Sends data to the MQ.

Two parts here are interesting; the tokio threading allows for all sorts of options

for creating threads. In our case, we are using tokio to run an interval thread that

will send every 60 seconds. Remember that the tokio::run is nonblocking; it simply

creates a new thread, so this method will return immediately, which is the main reason

we need to put the configuration data on the heap so it’s not lost or reborrowed by

subsequent calling code.

The other thing is the send method itself. Right now, it’s pretty simple; it just sends

an everything is great. And everything is great; from a server perspective, we will assume

everything is not so great if we don’t hear back from it every hour. This method will get

more interesting as we add on peripherals later in the book, but right now, we have

about everything needed to run this application.

 Keep Alive

One final thing, like I said, the timer is nonblocking. As of now, we’d run this, and it may

run the timer once and then exit the application immediately. To solve this, we will add an

infinite loop to the end of the main() function; an easy-to-use infinite loop is in Listing 8-29.

Listing 8-29. The infinite loop at the end of our main function in src/main.rs

loop {

 std::thread::sleep(std::time::Duration::new(10, 0));

}

Chapter 8 raspberry pi

427

 Run from the Command Line

Now that we have this all together, let’s build it and run it. You will be able to build with

the same command we used in the hello world app; you can then transfer it over and run

it passing in the command-line arguments we had before.

Listing 8-30. Starts up the Raspberry Pi MQ application specifying our generated

certificates

./rasp-pi-mq -c /home/ubuntu/PiDevice.pem -k /home/ubuntu/PiDevice.key -r /

home/ubuntu/RustIOTRootCA.pem -s 192.168.7.31

If you see any errors connecting to your server, it’s probably because you don’t

have your application running on your desktop or a firewall blocking it. But assuming

everything works, we now have our first IoT use case complete. A backend server is

running with your device communicating with it.

 Summary
This chapter was our first chapter with the Raspberry Pi, and hopefully yours is now

running and communicating with the backend servers. Walking through I wanted to get

you comfortable with the Pi, the installation of the components, installing the image, and

copying over code for execution. In the next chapter, we will create another application

that will also run on the Pi. And we will perform more tasks and installation on the Pi;

some of it will include removing the SD card and updating the boot partition again.

Chapter 8 raspberry pi

429
© Joseph Faisal Nusairat 2020
J. F. Nusairat, Rust for the IoT, https://doi.org/10.1007/978-1-4842-5860-6_9

CHAPTER 9

Sense HAT
In the last chapter, we started to have the Pi communicate with our backend servers

and running a more advanced version of “Hello World”. In this chapter, we are going to

build up on this existing application by adding and using a set of hardware components.

After all, one of the things that makes the Pi so great is its hardware extensibility. That

is one of the biggest selling points of the Raspberry Pi, being able to add on sensors,

cameras, or even custom components that communicate with the board and the GPIO

specifically. We will be using a few of these components, but to start with, I want us to

use a component that gives us an all-in-one board to use, the Sense HAT. We will be

interacting with this board throughout the chapter, gathering the temperature for the

board as well as using it as the basis for our future command interaction with the board.

In addition, we will integrate it with our login authorization flow.

 Goals
For this chapter, we are not going to go over every feature; we are only going to use three

of those features for interacting with our application. We will use the LED for textual

and warning displays. The textual displays will be used for the temperature and login as

well as any warning lights for connectivity or other problems.

Our goals when finished will be to have a functional board with Sense HAT that has

the following capabilities:

• Able to calculate the temperature.

• Display the temperature when the user clicks the center of the

joystick.

• Use the display to show the device code to log in with.

• Display a question mark when we have MQTT connectivity issues.

• Display a holiday image for Christmas and Halloween.

https://doi.org/10.1007/978-1-4842-5860-6_9#DOI

430

 Hardware
In the previous chapter, we added a basic running heartbeat to the application. This was

fairly simple, and much of our time was spent making sure it could compile and deploy

to the Pi. What our advanced Hello World would do was the Pi app started and would

periodically send a heartbeat. In this chapter, we plan to complicate things quite a bit

more, and that will require us to use new peripheral, the Sense HAT, and to add some

more complicated code. This chapter will be a new application for the Raspberry Pi.

We are going to keep the heartbeat separate in its own process, and this will be an entirely

new application. Both running on the Raspberry Pi though. In Chapter 11, we will discuss

how to have the heartbeat and this application communicate with each other.

The Sense HAT is an all-in-one board that can be affixed to the top of of your Pi

taking up all 40 of the GPIO pins, which will provide the complete interface to the board

and the power to the board. The board is unique, in that it has quite a few chips on it to

allow us quite a bit of different features to detect the world around us. The chipsets can

determine these:

• Air pressure

• Humidity

• Temperature (collocated on the air pressure and humidity sensors)

• Gyroscope – The orientation of the Pi and if it is changing

• Magnetometer – To measure magnetic forces

• Accelerometer – To measure the movement and speed of the Pi

All these combined can provide quite a bit of interactivity to measure your outside

world. In fact, Raspberry Pis with Sense HAT were used aboard the International

Space Station to conduct experiments. Also the board allows us some interaction and

communication with the user; to that end we have an

• 8x8 LED matrix display

• Five-button joystick

The device is easy to install and somewhat easy to use in isolation; however, we want

to use it as a system which requires simultaneous use and multiple interactions between

components. The goal for this section is to attach the Sense HAT and using a few crates

Chapter 9 SenSe hat

431

control the temperature, LED, and joystick. We will make more use of the joystick in

the following chapters, but for now, we will keep it basic. One of the big challenges for

this chapter is to run multiple background processes while still allowing input from the

joystick:

• Daily displays of the temperature

• Display of holiday lighting

For this chapter, many of the crates I have tweaked the functionality. Quite a few of

them have not been updated in years, but that is mostly because the underlying code to

interact with the sensors has not changed either. I do hope to merge some of my changes

back to their parent and will modify the code online when I do.

All of this needs to happen while still allowing for joystick control. Remember that

Rust is a very memory-safe language, so we won’t be simply passing in the LED and

Atmospheric structs in multiple threads run by different modules that simply wouldn’t

work. We will be using instead multi-producer, single-consumer channels to run all of

our logic. This will give us our multi-threaded capabilities without worrying about multi-

threads trying to own the same memory. But that part is down the road a bit; let’s start

with installing the Sense HAT.

 Install
The SenseHAT is a somewhat brilliant all-in-one board, designed specifically for the

Raspberry Pi. It’s a board that gives us many features in one compact inexpensive board.

Before we dive into the board features, let’s start with getting this unboxed and installed.

In Chapter 1, I gave you a link to a Sense HAT you can purchase from Amazon; if you’ve

forgotten it, the URL for the board to purchase is http://amzn.com/B014HDG74S (and is

the board I used for this chapter).

Once you have it, let’s open it up; in Figure 9-1, we have a picture of the unboxing

and all the parts.

Chapter 9 SenSe hat

http://amzn.com/B014HDG74S

432

This contains a manual, the board itself, and the spacers used to attach it to the main

board. The Sense HAT is going to attach to your GPIO board; however, it can’t attach to

it directly due to space limitations of the chips and sensors already on the board. That is

why the kit contains spacers with it both for the GPIO and the board. Start by attaching

the GPIO extender to your board like in Figure 9-2.

Figure 9-1. Shows the unboxing of our Sense HAT

Chapter 9 SenSe hat

433

Now we will install the SenseHAT on top of the board, but first let’s attach the spacers

to the board; if we don’t, the board will be unstable and you risk bending the pins or

worse. Screw the spacers in to the SenseHat, then attach the spacers to the four corners,

and attach the board on to the top. In Figure 9-3, we have the complete board assembled

and powered on.

Figure 9-2. Board with the GPIO extender

Chapter 9 SenSe hat

434

One final thing before powering it up, take out your SD card you had in before
and go back to the config.txt. You will have to uncomment the line

uncomment if hdmi display is not detected and composite is being output

hdmi_force_hotplug=1

With the line uncommented, it will allow you to turn on the Pi without a display

attached to it. Now you can attach the board and turn it on; it will light up all the LEDs

each time and then turn off. If you haven’t altered the preceding config, you will need

to attach an HDMI monitor or the lights will just stay on and it won’t finish the booting

process. Once the LED goes off, it will be ready to log onto the board.

Figure 9-3. The board attached and started up

Chapter 9 SenSe hat

435

 Sensors
The sensors on the board are run by an Atmel chip that operates on a i2c (pronounced

eye-squared-cee) protocol which require us to code against that protocol to work

correctly. Thus, all our sensors we have will be communicating on the same protocol.

This will help us in the debugging of it because this will allow us to run commands

against the board directly from the shell to check its status. This is a standard protocol on

a bus that Raspberry Pi uses to speak to other embedded devices, and the same logic can

be applied to other attached sensors as well. The i2c is a two-wire bus that has serial data

(SDA) and a serial clock (SCL). Your Pi can contain multiple i2c buses and will contain

one or more primaries and secondaries. Because the lines are shared between multiple

secondaries, each device attached to it will have a specific address that it communicates

on.1 Those addresses can vary by the type of device we attach; in Table 9-1, I list the

addresses for all of the sensors on the Sense HAT.

The addresses are all documented on the Sense HAT found at https://pinout.xyz/

pinout/sense_hat. It’s a good overview if you want details of what the circuits are doing

and where I got some of my information from.

Since we are using the Raspbian Buster Lite OS, we will need to install drivers for the

Sense HAT; these normally are preinstalled with the image if you used the full Buster

OS. We also need to install some tools that allow us to make sure the Pi and the HAT are

communicating properly. It’s also good for debugging purposes. One of the easiest ways

to perform debugging is to examine the i2c bus. In Listing 9-1, after logging on to the

1 http://raspberrypi-aa.github.io/session3/i2c-temp-pressure.html

Table 9-1. Sensors and chipsets on the board

Name Sensor Address

accelerometer LSM9DS1 0x1c(0x1e)

Magnetometer LSM9DS1 0x6a(0x6b)

pressure LpS25h 0x5c

humidity htS221 0x5f

LeD matrix LeD2472G 0x46

Chapter 9 SenSe hat

https://pinout.xyz/pinout/sense_hat
https://pinout.xyz/pinout/sense_hat
http://raspberrypi-aa.github.io/session3/i2c-temp-pressure.html

436

board, we will install the Sense HAT libraries needed as well as a tool that will help us

communicate via the i2c protocol. (Note: The install is very verbose, and I’ve shortened

it down for brevity.)

Listing 9-1. Install i2c tools on the board

pi@raspberrypi:~ $ sudo apt-get update ①
Get:1 http://archive.raspberrypi.org/debian buster InRelease [25.1 kB]

Get:2 http://raspbian.raspberrypi.org/raspbian buster InRelease [15.0 kB]

...

pi@raspberrypi:~ $ sudo apt-get install -y sense-hat ②
Reading package lists... Done

Building dependency tree

Reading state information... Done

The following additional packages will be installed:

...

pi@raspberrypi:~ $ sudo apt install -y i2c-tools ③
Reading package lists... Done

Building dependency tree

Reading state information... Done

The following additional packages will be installed:

 libi2c0 read-edid

 ...

Processing triggers for man-db (2.8.5-2) ...

Processing triggers for libc-bin (2.28-10+rpi1) ...

 ➀ Downloads package information for all configured sources needed or

the next two steps may fail.

 ➁ Installs necessary libraries for communication with the Pi.

 ➂ Installs tools to debug communication between the Pi and the HAT.

Now that we have it installed, go ahead and run the command i2cdetect -y 1.

The -y indicates we want non-interactive mode, and the 1 tells it which i2c bus to

use. The Raspberry Pi board only has two i2c buses: one of them is the GPIO and the

other is on the P5 header where you’d have to solder into that header to use. Since we

attached the Sense HAT to the GPIO, we are using i2c-1. In Listing 9-2, we run the

command on the Raspberry Pi.

Chapter 9 SenSe hat

437

Listing 9-2. Running i2cdetect on the board

ubuntu@ubuntu:~$ sudo i2cdetect -y 1

 0 1 2 3 4 5 6 7 8 9 a b c d e f

00: -- -- -- -- -- -- -- -- -- -- -- -- --

10: -- -- -- -- -- -- -- -- -- -- -- -- 1c -- -- --

20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

40: -- -- -- -- -- -- UU -- -- -- -- -- -- -- -- --

50: -- -- -- -- -- -- -- -- -- -- -- -- 5c -- -- 5f

60: -- -- -- -- -- -- -- -- -- -- 6a -- -- -- -- --

70: -- -- -- -- -- -- -- --

You might notice a few things pop out if you remember the addresses we just

went over. Notice the 6a and 5f; those are our magnetometer and humidity sensor,

respectively. What we should also have is a 5c, but where 50 and c meet, you may have

UU (I tried with three boards, and my Pi 3 was inconsistent and showing it). The UU

indicates a busy used state. Just be aware, if you do see a UU, then you won’t be able to

use that sensor for the temperature reading; that will become important when we do the

temperature calculations to know which sensors we have available.

Note there are other debugging tools that help visualize your bus. “lsmod |
grep i2c” will give you an output:

st_pressure_i2c 16384 0

st_magn_i2c 16384 0

st_magn 20480 2 st_magn_i2c,st_magn_spi

st_pressure 20480 2 st_pressure_i2c,st_pressure_spi

st_sensors_i2c 16384 2 st_pressure_i2c,st_magn_i2c

st_sensors 28672 6 st_pressure,st_pressure_i2c,st_magn_i2c,st_

pressure_spi,st_magn,st_magn_spi

industrialio 90112 9 st_pressure,industrialio_triggered_

buffer,st_sensors,st_pressure_i2c,kfifo_buf,st_magn_i2c,st_pressure_spi,st_

magn,st_magn_spi

Chapter 9 SenSe hat

438

This tells you all the sensors there are available; in addition, you can run

“sudo i2cdump 1 [address]” to query the state of individual settings on your device.

If you want more details on how the Sense HAT and Pi systems work, there are

quite a bit of documentations out there; I just wanted you to get enough of an overview

that the coding going forward you would know where certain features come from. For

now though, we are going to move on to setting up interactions with the LED and the

temperature sensors. The way we are going to perform these operations is by using a

variety of crates to control the sensors and display and then writing small wrappers to

them for our individual functions we need.

 LED Display

First up on our list is the LED screen. The LED screen is the big 8x8 multi-colored

LEDs we saw light up when we started the Pi. Since we aren’t using a standard screen

for our application, this LED display is going to become very important to display our

interactions with the user, since for this particular device, this is the one we are using.

Also I wanted to use the device to have a bit of fun with by displaying different emblems

for Christmas and Halloween. Let’s start by going over everything I want our display

to show, and then we can talk about how to do it. In Table 9-2, I have a listing of our

different type of displays we are going to code to and the corresponding function that

will encapsulate the logic.

Chapter 9 SenSe hat

439

These are quite a bit of functions we want to implement, but each will solve for us

all our use cases; we need to display a variety of text and anything else to the screen.

To start with, we will be making use of the sensehat-screen crate (https://github.

com/saibatizoku/sensehat-screen-rs). We will also incorporate the features that are

necessary for allowing us to perform various textual displays to the screen. In Listing 9-3,

I add the crate as well as applied the features for displaying and scrolling our text.

Listing 9-3. Adding sensehat-screen to our Pi application

[dependencies]

sensehat-screen = { version = "0.2", default-features = false, features =

["fonts", "linux-framebuffer", "scroll"] }

We are also adding in the features for controlling the fonts and scrolling; these are

both needed for our application in order to display static and scrolling text; in addition,

the linux-framebuffer is how we are going to write to the LED. There are other features

like rotate and clip that we aren’t using so I didn’t include them, but you can go to the

site and add extra features to your individual application.

Table 9-2. Displays we will create on the Sense HAT

Name Function Description

Blank blank Blank out the screen to clear it out after we have displayed any

symbols or sequences.

Question

mark

question a question mark to display in case of an error.

processing processing run through a progress screen that shows sequential blocks, to be

used while waiting for a response from another system.

Symbols display_

symbol

Used to display an 8x8 LeD “image” to the screen; this will be a

predefined multi-color output.

text display display Will output a different set of text, one letter at a time with a predefined

wait of 800 ms.

text

scrolling

scroll_text also displays a set of text, but instead of shifting a whole letter at a

time, this will scroll the text through.

Chapter 9 SenSe hat

https://github.com/saibatizoku/sensehat-screen-rs
https://github.com/saibatizoku/sensehat-screen-rs

440

The screen crate is a self-contained module via the sensehat_screen::Screen

struct. We will be wrapping this and implementing the methods we mentioned earlier

to interact with the screen. The Screen itself is a high-level API that interacts with the

linux-framebuffer. Screen will open to the framebuffer’s file descriptor in order to

connect and write to the LED matrix. From there, it will just be writing our input. Input

comes in the form of the FrameLine struct that contains raw bytes needed for the buffer.

From there, the Screen will take the FrameLine information and write it to the LED

matrix. We will be converting Unicode to bytes directly when we create our holiday

pictures; in other situations, we will use wrappers provided by the crate that allow us to

convert the text to raw bytes without us having to create our own font catalog.

Frames

The 8x8 LED display will display colors on each matrix in a 16-bit RGB565 color

representation; this basically gives you the color pallet you had in your old Atari Lynx

(yes, very old school reference) but obviously not as a tight of a pattern. We are going

to send to the framebuffers an 8x8 set of RGB colors. How this translates though is not

an actual dual array but as a u8 single array that divides the RGB color in half for each

LED. Thus, you will have a 128-sized array of u8 types ([u8: 128]), which is 8 x 8 x 2. This

gives you two bytes for each color and then defines each LED matrix possible. For our

“images” like the pumpkin and Christmas tree and any other static display, we will set up

the constants in a multi-line format, so visualizing it can be easier.

We are going to feed to the framebuffers an 8x8 array of colors that converts the

hexadecimal representation of the color into bytes. The individual pixels are 16-bit RGB

color representation. One challenge is to come up with the colors to use; most online

sites that have color pickers use RGB888, the standard for websites CSS. However, the

LED matrix uses RGB56 instead; there are a few sites that make it easy to come up with

the colors; the following two URLs are what I used to pick colors:

• https://chrishewett.com/blog/true-rgb565-colour-picker/ –

Allows you to adjust the red green and blue to get the color and the

RGB56 code

• https://trolsoft.ru/en/articles/rgb565-color-picker –

Reverses it and allows you to input the RGB56 code and see the

color for it

Chapter 9 SenSe hat

https://chrishewett.com/blog/true-rgb565-colour-picker/
https://trolsoft.ru/en/articles/rgb565-color-picker

441

In Listing 9-4, I have a 128 u8 representation of a Christmas tree that we will use to

display during the month of December preceding boxing day.

Listing 9-4. A constant for a Christmas tree, file is in led/mod.rs

// Christmas Tree

pub const CHRISTMAS_TREE: [u8; 128] = [

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xE0, 0x07, 0xE0, 0x07, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0xE0, 0x07, 0xE0, 0x07, 0xE0, 0x07, 0xE0, 0x07,

0x00, 0x00, 0x00, 0x00,

 0x00, 0x00, 0xE0, 0x07, 0xE0, 0x07, 0xE0, 0x07, 0xE0, 0x07, 0xE0, 0x07,

0xE0, 0x07, 0x00, 0x00,

 0xE0, 0x07, 0xE0, 0x07, 0xE0, 0x07, 0xE0, 0x07, 0xE0, 0x07, 0xE0, 0x07,

0xE0, 0x07, 0xE0, 0x07,

 0xE0, 0x07, 0xE0, 0x07, 0xE0, 0x07, 0xE0, 0x07, 0xE0, 0x07, 0xE0, 0x07,

0xE0, 0x07, 0xE0, 0x07,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x61, 0x80, 0x61, 0x80, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x61, 0x80, 0x61, 0x80, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00,

];

This will produce a tree with a light at the top and then green throughout. You will

notice in the second line we have 0xE0, 0x07, 0xE0, 0x07; this represents two LED

lights of RGB565 color 07E0 and 07E0 which is a green color. You may be taking a double

take on the input and the color and noticed the pairing is reversed from the input. That

is not a typo; that is how you have to input the set. So keep that in mind when adding

colors. In Figure 9-4, you can see the output that this will create.

Chapter 9 SenSe hat

442

This is a black and white book, so the color variants may not show up here, but once

you run the code on the board, it will. In addition, I’ve also added some yellow boxes we

will use for concentric box display (for a processing image) and a pumpkin that we can

use for the month of October. The code is in the repository; I have not included it here as

I doubt any of you are going to line by line copy it.

But now that we have the understanding of it, let’s go back to adding code for it. As I

said text is easy, and images aren’t. We are going to add a struct FrameProcessor that

will share as an easy cheat to display a few items:

• Our set of yellow concentric squares

• A question mark

• An off frame which will be translated as a buffer of [0x00; 128] for

our blank display

Figure 9-4. A Christmas tree being displayed on the Sense HAT

Chapter 9 SenSe hat

443

The easiest way to create a FrameLine from a set of RGB colors is to create the 128

slice. From there, we can use the call FrameLine::from_slice passing in the slice to

create the FrameLine struct. Let’s look at this code in Listing 9-5.

Listing 9-5. The code from the FrameProcessor; file is in led/screen.rs

struct FrameProcessor {

 off_frame: FrameLine,

 yellow_squares: [FrameLine; 4],

 question_mark: FrameLine,

}

impl FrameProcessor {

 fn new() -> FrameProcessor {

 let ys = [①
 FrameLine::from_slice(&super::YELLOW_SMALL),

 FrameLine::from_slice(&super::YELLOW_MED),

 FrameLine::from_slice(&super::YELLOW_LARGE),

 FrameLine::from_slice(&super::YELLOW_XL),

];

 // Question Mark

 let white_50_pct = PixelColor::WHITE.dim(0.5); ②
 let q_mark = FONT_COLLECTION.get('?').unwrap();

 FrameProcessor {

 off_frame: FrameLine::from_slice(&super::OFF), ③
 yellow_squares: ys,

 question_mark: font_to_frame(&q_mark.byte_array(), white_50_pct), ④
 }

 }

}

 ➀ Creates an array containing all the individual yellow squares.

 ➁ For use with the question mark, we want the display of it to be only

50% brightness.

Chapter 9 SenSe hat

444

 ➂ Initializes our new frame starting with the OFF frame from the slice

we defined in led/mod.rs.

 ➃ The question mark uses font_to_frame from the sensehat_screen to

convert the font to a FrameLine.

You will notice that this struct is not public, and it’s intended to be used only by

the LedControls struct that we are creating next which will use these to send to the LED

matrix.

LED Controls

Now that we have the processing for a few of our image use cases and understand how

we display with framebuffers, let’s turn our attention to implementing the code to display

to the LED. We are going to create a LedControls structure that will wrap all our calls

to the Screen and FrameProcessor. This will drive all the interactions from the outside

modules to the LED display. In Listing 9-6, we are creating that struct.

Listing 9-6. Creating the struct for LedControls; file is in led/screen.rs

use sensehat_screen::{font_to_frame, PixelColor, Screen, FrameLine, FONT_

COLLECTION, Scroll}; ①

use std::thread;

use std::time::Duration;

const LED_DEV_PATH: &str = "/dev/fb1"; ②

pub struct LedControls {

 screen: Screen, ③
 frame: FrameProcessor

}

// Clone is needed because :: pub trait FlowDelegate: Clone {

// so its constituent parts have to be Clone

// This is needed for our Authenticator

impl Clone for LedControls { ④
 fn clone(&self) -> Self {

 LedControls {

Chapter 9 SenSe hat

445

 screen: Screen::open(LED_DEV_PATH).unwrap(),

 frame: FrameProcessor::new()

 }

 }

}

impl LedControls {

 pub fn new() -> LedControls { ⑤
 LedControls {

 screen: Screen::open(LED_DEV_PATH).unwrap(),

 frame: FrameProcessor::new()

 }

 }

}

 ➀ Use all the structs from the crate that are needed by our application.

 ➁ The LED Path; this is the default path to talk to the file descriptor; this

should be the same on your boards as well.

 ➂ Our struct has two properties that we need to instantiate before

using.

 ➃ The Clone will be used later when having to pass through to our

authentication modules.

 ➄ The implementation and creating of our LedControls.

Note using creating new FrameProcessor::new() on cloning is probably not the

best idea since you could potentially have two different parts of an application writing

to the screen at the same time and lead to a corrupted screen. However, on startup, the

authentication is a blocking process and won’t allow any further functions till you log in,

so this shouldn’t occur.

Two things really of note here: on bullet 5, if there is an error accessing the file

descriptor, this will cause a panic. I haven’t wrapped it because if it does, then the

rest of our app has a difficult time working since we will never be able to display the

authentication or anything else to the screen. In addition, you will notice here we are

implementing the Clone in bullet 4 as opposed to deriving it. The reason for this is

Screen does not derive Clone so we would not be able to use the self-deriving macro. For

our code, we are just going to open another connection to the file descriptor.

Chapter 9 SenSe hat

446

Next, we are going to add the individual functions that will produce output to the

screen. I won’t be adding the code to test those here, as we are going to wait till we

integrate it with the rest of the system, but feel free to run through testing each as we go

along on your own Pi. We will be able to use the FrameLine instances we created earlier

to pass to the screen to write them out. We use the call screen.write_frame passing in

the FrameLine to it, which will write those frames to the LED. Let’s take a look at each

method we are implementing; you will note they all follow the same general pattern.

Blank Screen

First up in Listing 9-7 is blanking the screen. This will use the off_frame from the

FrameProcessor we just created.

Listing 9-7. Blanks the screen; file is in led/screen.rs

 pub fn blank(&mut self) {
 self.screen.write_frame(&self.frame.off_frame);
 }
}

Question Mark

In addition, we can combine multiple write_frame together with delays in order to

change what is displayed. In Listing 9-8, we display a question mark first, wait 3 seconds,

and then blank the screen since we no longer want the question mark at that point.

Listing 9-8. Displays a question mark for 3 seconds; file is in led/screen.rs

 pub fn question(&mut self) {
 self.screen.write_frame(&self.frame.question_mark);
 thread::sleep(Duration::from_secs(3));
 self.screen.write_frame(&self.frame.off_frame);
 }
}

Displaying an Image

Here we make use of the Christmas tree and pumpkin images we created earlier to display

them to the screen for a given time and then blank them out after. Now in Listing 9-9, since

the images we used before are in a format of [u8: 128], we will have to convert that to a

FrameLine before processing. We could have put these two displays in our FrameProcessor,

but I didn’t want to tie this method to only be able to display those two images.

Chapter 9 SenSe hat

447

Listing 9-9. Displays an array image for a given set of time before blanking out

the screen; file is in led/screen.rs

 pub fn display_symbol(&mut self, frame: &[u8; 128], length: u64) {

 let frame_line = FrameLine::from_slice(frame);

 self.screen.write_frame(&frame_line);

 thread::sleep(Duration::from_secs(length));

 self.screen.write_frame(&self.frame.off_frame);

 }

}

Processing Screen

The processing screen function in Listing 9-10 will use the yellow concentric arrays we

created earlier and run it through three times to make it appear like there is a “busy”

state on the board. Ideally, you could make this fancier with interrupts or checks if it

needs to keep going, but this is something simple one can build up on to later.

Listing 9-10. Processing display; file is in led/screen.rs

 pub fn processing(&mut self) {

 let sleep_time = 500;

 let yellow_squares = self.frame.yellow_squares;

 for x in 0..2 {

 for ys in &yellow_squares {

 self.screen.write_frame(ys);

 thread::sleep(Duration::from_millis(sleep_time));

 }

 }

 }

}

Display Text

Finally, we get to actually displaying text that is passed in. Here we need to pick the color,

pick the font, and then convert that text into a FrameLine. In Listing 9-11, we display text

before blanking the screen after 800 ms.

Chapter 9 SenSe hat

448

Listing 9-11. Display a text string; file is in led/screen.rs

 pub fn display(&mut self, word: &str) {
 // get the screen text

 // uses a macro to get the font string

 let screen_text = FONT_COLLECTION.sanitize_str(word).unwrap(); ①
 let white_50_pct = PixelColor::WHITE.dim(0.5);

 // Display the items

 for unicode in screen_text.chars() {
 if let Some(symbol) = FONT_COLLECTION.get(unicode) { ②
 let frame = font_to_frame(&symbol.byte_array(), white_50_pct); ③
 self.screen.write_frame(&frame); ④
 }

 thread::sleep(Duration::from_millis(800));

 }

 // now turn the display back off

 self.screen.write_frame(&self.frame.off_frame);
 }

}

 ➀ Will take the text passed in and convert the set to a vector of

FontUnicode.

 ➁ Now converts the Unicode to a byte array representation.

 ➂ Converts that byte array to a FrameLine that can be used to write to

the LED.

Scroll Text

The preceding listing just displays the text one by one with a delay between each letter,

but a somewhat fancier method is to scroll the text across the LED display. The code in

Listing 9-12 will scroll text across the screen.

Listing 9-12. Function to scroll text across the screen; file is in led/screen.rs

 pub fn scroll_text(&mut self, word: &str) {

 let sanitized = FONT_COLLECTION.sanitize_str(word).unwrap();

 // Render the `FontString` as a vector of pixel frames, with

 // a stroke color of Blue and a BLACK background.

Chapter 9 SenSe hat

449

 let pixel_frames = sanitized.pixel_frames(PixelColor::BLUE,

PixelColor::BLACK); ①

 // Create a `Scroll` from the pixel frame vector.

 // this will create some arrows to scroll over

 let scroll = Scroll::new(&pixel_frames); ②

 // Consume the `FrameSequence` returned by the `left_to_right`

method.

 scroll.left_to_right().for_each(|frame| { ③
 self.screen.write_frame(&frame.frame_line());

 thread::sleep(::std::time::Duration::from_millis(250));

 });

 }

}

 ➀ Create a vector of PixelFrame for each inner font of the text passed in

with the colors for the font color and background image (black will be

blank).

 ➁ Create the Scroll structure that will store the pixel frames for display.

 ➂ Finally display the text, scrolling in from left to right with a 250 ms

delay between each.

You can scroll any direction from left to right, right to left, top to bottom, or bottom to

top. Each has an appropriately named method.

All of these functions will provide us all our tools needed to interact with the screen

in the rest of the application. I would suggest trying a few just to get the hang of it.

 Temperature Display

For now, let’s move on to our sensor inputs. There are actually quite a few sensors on

the board, and the crate we are using for this section has access to all the sensors. The

gyroscope and accelerometer though didn’t really fit into a use case for the book, but

you can investigate this crate later to learn how to gain access and use them. For this

book, we are going to focus on getting a temperature reading. There are two temperature

sensors on the board: one collocated with the pressure sensor and the other with the

Chapter 9 SenSe hat

450

humidity sensor. You can use either sensor or you can use both and take the average

between the two. We are just going to use the humidity sensor (I actually had issues with

one of my SenseHats on the pressure sensor).

Before we actually show the full set of code, let’s build up on getting the temperature.

First off, we are going to import our crates, and once again this will require some minor

modifications. The branch I created adds more feature flags in order to turn off sensors

we aren’t going to use without the code panicking if it has an issue accessing a sensor.

If you recall earlier, there was an issue accessing the pressure sensor; if it was in a UU

state, the code would panic; I decided this isn’t really a good thing if you aren’t going

to use that sensor anyways. And feature flags seemed to be the least intrusive way to fix

this. The import of crates in Listing 9-13 will then not try to use or initialize the pressure

sensor.

Listing 9-13. Adding sensehat-screen to our Pi application, in Cargo.toml

[dependencies]

sensehat = { version = "1.1.1", default-features = false, features =

["humidity"], git = "https://github.com/nusairat/sensehat-rs.git", branch =

"chore/fix-retrieve-error"}

You will notice one of the feature flags is for humidity; I also added one for pressure

that is available but not being used. Now earlier we talked about how we need to talk

to the sensors in the i2c bus at specific addresses. This crate uses the i2cdev crate to

do all the communication for us and get all the information needed from those sensors

and wrap it in a nice usable struct. If you get curious, there is a htss221.rs module in

the crate that has all the code and information on how to communicate with the i2cdev

crate and how to read the bytes that the device is transmitting. The i2cdev crate is an

easy-to-use crate to interact with if you know how you are trying to communicate. For

example, if you wanted to interact with the humidity chip, we know from before that we

are communicating to the /dev/i2c-1; since this is attached to the GPIO board, we also

know from the documentation that it is on the address 0x5f; in order to instantiate the

LinuxI2CDevice to communicate specifically with that chip, all you’d have to do is this:

i2cdev::linux::LinuxI2CDevice::new('/dev/i2c-1', 0x5f)

And if you searched the sensehat-rs crate we are using, you’d find a line similar

to that in order to initialize access to the board. If you run into a new i2c bus device

that there is no current support for, one cheat is to find a corresponding Python library.

Python has a very rich community that creates Pi applications. You can use that as a

Chapter 9 SenSe hat

451

basis to know what kind of data is needed to be read and written to the i2c. But let’s take

a look at what we want; we want access to the temperature reading; this is pretty easy; in

Listing 9-14, we initialize the SenseHat and retrieve the temperature reading in celsius.

Listing 9-14. Determining the temperature from the humidity sensor

let hat = SenseHat::new().unwrap()

let temp = hat.get_temperature_from_humidity().unwrap().as_celsius();

println!("Temp : {:?} C", temp);

This will print out the temperature right now. You can go ahead and try it locally.

If you actually did it, you will notice the temperature seems a bit hotter than you

expected. The reason for this is those sensors are RIGHT next to the board and other

chips that are heating the air around our HAT sensors. This is picking up the heat

dissipated by our Pi giving us a spurious reading. Now if you only care about registering

drastic changes in temperature, then this is probably fine, and you can continue.

However, if you want to try and get a more accurate temperature, there are a few things

we can do.

First thing we can do is get a ribbon cable and move the SenseHat further away from

the board; this will help produce a more accurate reading because it won’t be picking up

any heat from the Pi’s CPU. However, this will look bad, and I don’t particularly like that

solution.

The other solution is going to require us do two things:

 1. Get the temperature of the CPU which we can use to know how

much the temperature of the sensor is being offset by.

 2. Apply a factor to it to try and determine the calibrated difference.

Essentially, we are going to have this equation to determine the real temperature:

temp_calibrated = temp - ((cpu_temp - temp)/FACTOR)

This will take the difference of the CPU minus the sensors’ temperature and divide it

by a factor that will give us the amount to subtract. This factor is the tricky part; this is a

calculated value based on the Pi’s reading and and actual thermometer’s reading. If you

have the time and a real thermometer in the house, I’d take six or so readings during the

day and apply them to that equation and average it to get the most accurate factor for

your area. If instead you want a more average of a factor, the Weather Underground Pi

project has done this already. We can use the factor they determined and generalize it to

Chapter 9 SenSe hat

452

all. It won’t be as accurate since location and other factors are involved, but the number

they came up with was 5.466 as the factor. Now this factor made it more accurate for

me but was still not 100% accurate. But you at least get the idea of what we are trying to

accomplish. If you want, run this and create your own factor to use.2

The one question you may be asking yourself after reading that is how do I get

the CPU temperature? It’s actually easier than you may think; the temperature is set

in celsius in the file /sys/class/thermal/thermal_zone0/temp. Now we have all the

details we need. Let’s begin our code; what we are going to do is similar to our LED and

create an Atmospheric wrapper struct to get a formatted version of the temperature

back. This structure will wrap that connection to the SenseHat. In Listing 9-15, we create

our Atmospheric struct with one public method get_temperature() that will return

the temperature in fahrenheit.

Listing 9-15. Creating our Atmospheric interactions; file is in sensors/

atmospheric.rs

use sensehat::SenseHat;

use std::fs;

use log::{debug, info};

const THERMAL_TEMP: &str = "/sys/class/thermal/thermal_zone0/temp"; ①

const WUNDERGROUND_ADJUSTMENT_FACTOR: f64 = 5.466;

pub struct Atmospheric {

 hat: SenseHat<'static> ②
}

impl Atmospheric {

 pub fn new() -> Atmospheric {

 Atmospheric {

 hat: SenseHat::new().unwrap() ③
 }

 }

2 https://github.com/initialstate/wunderground-sensehat/wiki/Part-3.-Sense-HAT-
Temperature-Correction

Chapter 9 SenSe hat

https://github.com/initialstate/wunderground-sensehat/wiki/Part-3.-Sense-HAT-Temperature-Correction
https://github.com/initialstate/wunderground-sensehat/wiki/Part-3.-Sense-HAT-Temperature-Correction

453

 pub fn get_temperature(&mut self) -> String {

 // Get the temperature from the humidity

 // we could also do pressure

 let temp = self.hat.get_temperature_from_humidity().unwrap().as_

celsius(); ④
 let thermal_tmp = fs::read_to_string(THERMAL_TEMP.to_string()).

unwrap(); ⑤
 let thermal_tmp_str = thermal_tmp.as_str().trim();

 // CPU temp needs to be divided by a 1000 to get the actual Celsius

temperature,

 // It supplies it like : 55991

 let cpu_temp: f64 = thermal_tmp_str.parse().unwrap(); ⑥
 let calculated_temp = temp - (((cpu_temp * 0.001)- temp)/

5.466) - 6.0; ⑦
 let calc_temp_f = calculated_temp * 1.8 + 32.0; ⑧

 debug!("Calculated Temp: {:?} C", calculated_temp);

 info!("Calculated Temp: {:?} F", calc_temp_f);

 format!("{:.1} F", calc_temp_f) ⑨
 }

 pub fn get_temperature_in_c(&mut self) -> f32 {

 // Get the temperature from the humidity

 // we could also do pressure

 let temp = self.hat.get_temperature_from_humidity().unwrap().as_

celsius();

 let thermal_tmp = fs::read_to_string(THERMAL_TEMP.to_string()).

unwrap();

 let thermal_tmp_str = thermal_tmp.as_str().trim();

 // acquire CPU temp

 let cpu_temp: f64 = thermal_tmp_str.parse::<f64>().unwrap() * 0.001;

 let calculated_temp = temp - ((cpu_temp - temp) / WUNDERGROUND_

ADJUSTMENT_FACTOR);

Chapter 9 SenSe hat

454

 // F32 is the type needed by hap current_temperature

 calculated_temp as f32

 }

}

}

 ➀ Set as a constant the location of the file containing the CPU

temperature.

 ➁ Our only property is the SenseHat struct from the crate.

 ➂ Instantiate the struct; please note if you’ve added any features that

sensor is marked as UU in our i2cdetect, this will fail.

 ➃ Retrieve the temperature from the humidity sensor in celsius.

 ➄ Retrieve the thermal temperature from the file.

 ➅ Convert the string temperature to a float.

 ➆ Apply our equation we went over earlier using the temperatures we

just retrieved.

 ➇ Convert the temperature to fahrenheit because while I have two

science degrees, I live in the United States.

 ⑨ Format the value back to only have one digit, since the computed

value has many decimal values.

If your sensors all work and want an even more accurate reading, you can take an

average of the humidity and pressure sensors for the temperature as well. One thing to

note is that the std::fs::read_to_string read is relatively fast and cheap, especially

given the file is only one line, so we don’t need to worry about constant reads from the

application. Also we are only going to be pulling the temperature sporadically. We will be

using this code later for part of our daily schedule and with our joystick interactions.

 Joystick Control

You may have not noticed it, but there is a little button on the top of the Sense HAT,

closest to the Ethernet port; this is our joystick. The joystick can be moved left, right,

top, or bottom, and there is even a center switch as well. Using the sensehat-stick

crate (https://github.com/saibatizoku/sensehat-stick-rs) will allow us an easy

Chapter 9 SenSe hat

https://github.com/saibatizoku/sensehat-stick-rs

455

interaction with the joystick. This crate allows us to detect the direction and the action

performed on the joystick. We will only be doing some basic things with this crate for this

chapter, but in later chapters, we are going to expand on this module.

For now, let’s start by adding the crate to our dependencies. In Listing 9-16, we add

the stick.

Listing 9-16. Adding sensehat-stick-rs to our Pi application in our Cargo.toml

[dependencies]

sensehat-stick = { version = "0.1", default-features = false, features =

["linux-evdev"], git = "https://github.com/nusairat/sensehat-stick-rs.git"

}

Once again, I had to update the crates for this; there was an issue that while the

crate allowed you to see all the actions, it didn’t let you do any comparisons or equal

comparisons to the actions. Interacting with the joystick requires one just to perform

an infinite loop processing the events as they come in. In Listing 9-17, we have a simple

example where we get the event and print out the results.

Listing 9-17. Simple example of interacting with the joystick

use sensehat_stick::{JoyStick, JoyStickEvent, Action, Direction};

let stick = JoyStick::open().unwrap();

loop {

 for ev in &stick.events().unwrap() {

 info!("Stick -- {:?}", ev);

 }

}

For each event, there is an action and a direction; the various directions are Enter-

Up- Down-Left-Right.

And the various actions are Release-Press-Hold.

I think it’s fairly self-explanatory what each of these means. Go ahead and run the

code in your application placing it as the last thing you do in the main and you can see

some variety of the output it creates as you move the joystick around. We will be creating

a joystick module later that will help with our interactions.

Chapter 9 SenSe hat

456

 Creating Interactions
At this point, you should be able to interact with the various sensors on the Raspberry Pi,

and hopefully you’ve run through a couple quick tests. This was the easy part, because

running everything one time as a single call in Rust is straightforward. But now, we want

to take everything we’ve done and combine it into a few interactions.

As I mentioned when we started this section, we will be using channels via tokio

crate. The channels will allow us to create multiple producers and a single consumer.

The question of course begs what we are producing and what we are consuming. For our

applications, the producers will produce a single command at a time. Commands will be

enums that we can easily expand to in the future. Right now, our command enums are as

follows in Listing 9-18.

Listing 9-18. The commands we will be using for our first iteration of the

pattern; file is in manager.rs

#[cfg(feature = "ch09")]

#[derive(Debug)]

pub enum Action {

 ShowTemperature,

 Print(Display)

}

#[derive(Debug)]

pub enum Display {

 Halloween,

 Christmas,

 QuestionMark,

 Text(String)

}

These commands will handle the two main use cases of displaying the temperature

and printing out text or images to the screen. In the end, our consumer will receive the

commands from the channel and perform actions on the LedControls and Atmospheric

structs that we created earlier.

To start off, we are going to create two main set of modules producing the following

commands: the daily and joystick modules.

Chapter 9 SenSe hat

457

• Daily – A module that runs at intervals to display the temperature at 8

a.m. and will display either a Christmas tree or a pumpkin at noon if

it’s the Christmas or Halloween season.

• Joystick – A module that will perform actions when we click in

different directions. For this chapter, when you depress the center, it

will display the temperature.

When all of this is put together, we will have a Pi board that can respond to

commands happening in real time by the user and also be allowed to perform

background routine operations all against the same modules. Giving us in essence multi-

threaded multi-module access to singular components without violating any borrow

checking or constantly creating new inputs to the sensors potentially causing deadlocks.

 Tokio Async Run

We’ve used tokio in previous chapters mostly with the Rumqtt crate, but let’s dive into a

bit more detail. The asynchronous processing has changed quite a bit with Rust in 2019,

and tokio packages have been updated accordingly. If you used tokio in version 0.1,

you had to do quite a bit of instantiating your runners directly and had to handle your

process through promises and futures. Now with the async feature in the 1.39 version of

Rust, we will be using polling instead of the promise/future route. Tokio 0.2 takes full use

of the new async/await methods.

The async/await allows a developer to create a function asynchronously and then

to await the return of the data and the finish of processing it. We will be using this to run

our scheduler.

First up, let’s set up our dependencies in Listing 9-19 to include the latest tokio

and futures crate. This crate is heavily contributed and added to so don’t let the 0.3

version scare you, they have a solid road map to 1.0 and heavily respond to questions on

Discord.

Listing 9-19. The tokio and futures crate dependencies, code in file Cargo.toml

[dependencies]

tokio = { version = "0.2.4", features =["full"] }

tokio-timer = "0.2.12"

futures = "0.3"

Chapter 9 SenSe hat

458

Now at the end of our main method, we are going to call an asynchronous method

that will launch all of our background threads. In here, we create a channel that will

allow us to send values between. This channel is similar in operation to channels you

may have used in languages like Golang. The channel itself is initialized with a buffer,

which we are keeping low since most of the communication will be performed by

someone interacting with the Raspberry Pi and thus should never get too high. The

channels return two objects: a transmitter and a receiver. The transmitters are used to

transmit the data to the channel, and the receiver receives it. In Listing 9-20, we create

the function that will be run in our main; afterward, we will implement each of the

functions it calls.

Listing 9-20. Implementation of the tokio async code, code in file main.rs

#[tokio::main] ①
async fn run(matches: &ArgMatches, uuid: &Uuid) -> Result<(), Box<dyn

std::error::Error>> {

 use tokio::sync::mpsc;

 info!("Setup and start our channel runners ...");

 // defines the buffer to send in

 let (tx, rx) = mpsc::channel(100); ②
 let joy_tx: Tx = tx.clone(); ③
 let daily_tx: Tx = tx.clone();

 // Start our timer matcher

 // we want to do this after the authentication so we don't have any

interruption from the

 // login; this will also run Asynchronously

 daily::run(daily_tx); ④

 // Setup and run the Joystick now; ⑤
 joystick::run(joy_tx);

 // Ready our receivers

 let led_controls = Arc::new(Mutex::new(LedControls::new())); ⑥
 let atmospheric = Arc::new(Mutex::new(Atmospheric::new()));

Chapter 9 SenSe hat

459

 manager::run(rx, &led_controls, &atmospheric).await; ⑦

 debug!("Complete");

 Ok(())

}

 ➀ Uses the macro definition shortcuts creating a Builder::new with the

default of a threaded_scheduler to start up our async processing.

 ➁ Creates the channel with an initialization of a 100 in the buffer.

 ➂ Since we cannot pass the transmitter to multiple modules, we need to

clone it for each module we want to pass it to.

 ➃ Runs our daily background scripts transmitting commands when it

hits a daily input.

 ➄ Awaits our joystick input, sending commands back based on the

input.

 ➅ We wrap the LedControls and Atmospheric since they will be run

asynchronously in the manager.

 ➆ Calls our manager that will await forever waiting for transmissions.

In that function, you have three calls we have not defined yet; let’s go ahead and

define them.

 Daily Runs

Our first stop is to set up the daily module. The daily module is a module that will run

every hour on the hour firing off an event checker, as well as firing when we first boot

up the application. In this module, we will spawn a thread that loops infinitely. We will

then fire off our events inside the loop. Now we wouldn’t want an infinite loop that

constantly checks, since that would be a waste of resources. Instead, we will make use

of tokio::time module to control an interval and duration to fire. Having this duration

will allow us to only fire the event checker when it’s on the hour. We will use our loop in

conjunction with an interval check. We first will create the interval, given the time we

want it to start at and the duration; from there, we can let the interval tick, pausing till

the time has passed. This gives us in Listing 9-21 the ability to run code once an hour.

Chapter 9 SenSe hat

460

Listing 9-21. The main daily runner that will loop and run our special printouts,

code in file daily.rs

const INTERVAL_IN_SECONDS: u64 = 60 * 60;

 pub fn run(mut tx: Tx) {

 use std::ops::Add;

 let local: DateTime<Local> = Local::now(); ①
 let min = local.minute();

 // Determine the time till the top of the hour

 let time_from_hour = 60 - min; ②
 debug!("Min from hour : {:?}", time_from_hour);

 let time_at_hour = Instant::now();

 time_at_hour.add(Duration::from_secs((60 * time_from_hour).into())); ③

 // Compute the interval

 let mut interval = interval_at(time_at_hour, Duration::from_

secs(INTERVAL_IN_SECONDS)); ④
 tokio::spawn(async move { ⑤
 // run on initial start-up then timers after

 run_initial(&mut tx).await; ⑥

 loop {

 interval.tick().await; ⑦
 info!("Fire the Timer Checker; ");

 display_special(&mut tx); ⑧
 }

 });

 }

async fn send(tx: &mut Tx, action: Action) { ⑨
 if let Err(_) = tx.send(action).await {

 info!("receiver dropped");

 return;

 }

}

Chapter 9 SenSe hat

461

 ➀ Get the local time; this is going to be used as a basis to know how

long we are from the hour.

 ➁ Determine the amount of minutes till the top of the hour since we

want to fire this at the top of the hour.

 ➂ Add that difference so now that time_at_hour will be the time of the

next hour (i.e., if it’s 3:37, now this variable will be 4:00).

 ➃ Create our interval; the first parameter is the start, and the second is

the interval; in this case, we check it every 60 minutes.

 ➄ Spawn a new thread for our asynchronous call.

 ➅ Run our initial call to print either a Christmas tree or pumpkin.

 ➆ This is the start of the infinite loop; this will await the first tick which

occurs at the top of the hour.

 ➇ On the hour, it now runs the display.

 ⑨ The send method used by other calling functions to send our Action

to the receiver.

Few things to note here, the tx.send can only be called in an async functions which

also means its parent has to be in an async function as well and so forth. This is why you

are going to see a layer upon layer of async until you get to the tokio::spawn; from that

point, the async addition to the function is no longer necessary. Also this send method

will be in the other modules, but we aren’t going to print it out each time in the book.

We should also handle errors from the receiver better, but this code was already

complicated enough as it is, but something for the reader to think about when using in a

real-world application.

Next let’s look at that run_inital function that gets ran when the Pi app first starts

up; in Listing 9-22, we have that function which will check if it’s Christmas or Halloween.

Listing 9-22. Checks if it’s Christmas or Halloween, code in file daily.rs

async fn run_initial(tx: &mut Tx) {

 let local: DateTime<Local> = Local::now();

 if is_christmas(&local) {

 send(tx, Action::Print(Display::Christmas)).await;

 }

Chapter 9 SenSe hat

462

 else if is_halloween(&local) {

 send(tx, Action::Print(Display::Halloween)).await;

 }

}

And then in Listing 9-23, we run the daily_special that gets ran hourly, which

will send an action to show the temperature at 8 a.m. or at noon if it’s Christmas or

Halloween to display the tree and pumpkin, respectively.

Listing 9-23. Our daily checker that gets ran hourly, code in file daily.rs

 async fn display_special(tx: &mut Tx) {

 let local: DateTime<Local> = Local::now();

 // now switch based on the variable to display

 // we will only call this on the hour so we don't need to check the

minute

 // also could be a delay so better to not be that precise

 if local.hour() == 8 {

 //display_weather(tx);

 send(tx, Action::ShowTemperature).await;

 }

 else if local.hour() == 12 {

 if is_christmas(&local) {

 send(tx, Action::Print(Display::Christmas)).await;

 }

 else if is_halloween(&local) {

 send(tx, Action::Print(Display::Halloween)).await;

 }

 }

 }

Finally, we should take a look at the functions that check if it’s the month of October

(Halloween) or December (Christmas) in Listing 9-24.

Chapter 9 SenSe hat

463

Listing 9-24. Checks if it’s October or if it’s December before the 26th, code in

file daily.rs

 fn is_halloween(local: &DateTime<Local>) -> bool {

 local.month() == 10 && local.day() == 31

 }

 fn is_christmas(local: &DateTime<Local>) -> bool {

 // Any day in Christmas before the 25th

 local.month() == 12 && local.day() <= 25

}

This section shows us how to loop through a spawned function as well as how to

create an interval and duration.

 Joystick

We discussed the joystick code before but didn’t write any code specifically for the

application; let’s loop back and write some code. This code will be a combination of what

you saw earlier with the tokio async processing and the joystick code we did earlier.

We will create a new module joystick with an entry point of run(__) to the module.

Once again, we need to create a spawned thread and loop through it, except this time in

Listing 9-25, we are checking for event input and responding to the event accordingly.

Listing 9-25. Joystick responses, code in file joystick.rs

pub fn run(mut tx: Tx) {

 let stick = JoyStick::open().unwrap();

 run_on_loop(stick, tx);

}

fn run_on_loop(mut stick: JoyStick,

 mut tx: Tx) {

 use tokio::task;

 info!("Run Async Calls on the joystick");

 // Use Spawn Blocking since Stick Events is a blocking call, otherwise

we risk blocking

 // the current thread

Chapter 9 SenSe hat

464

 task::spawn_blocking(move || { ①
 loop {

 // TODO : Add some logic to break up the time if not you hold

the button down

 // And you may get it displaying 5 times

 for ev in &stick.events().unwrap() {

 info!("Stick -- {:?}", ev);

 // Create a response based on events

 // can be blank since the processing is inside

 if check_temp_event(&ev) { ②
 info!("Check Temperature Event");

 send(&mut tx, DisplayAction::ShowTemperature)

 }

 // TODO we will add more complexity later to this

 else {

 // let's just display a question mark

 warn!("Not Supported Event");

 }

 }

 }

 });

}

 ➀ Iterates through any events received.

 ➁ Checks for a temperature event; we will build this out more in

future chapters.

Lastly in Listing 9-26, we are going to implement the check_temp_event that will

check if the user entered and held down the button, the trigger for displaying the

temperature to the screen.

Listing 9-26. Checks if the user wanted the temperature, code in file joystick.rs

fn check_temp_event(ev: &JoyStickEvent) -> bool {

 // When the button is held down.

 if ev.action == Action::Hold

Chapter 9 SenSe hat

465

 && ev.direction == Direction::Enter {

 return true;

 }

 return false;

}

We now have all the producers we are creating for this chapter; you have potentially

three sets of producers sending data to the receiver to use.

 Receiver

As you can see clearly in all of this code, each time we are sending back the enums

we defined earlier. In some cases, we pass in dynamic values like the text; in others,

they are singular commands, ShowTemperature, but each one sends this through the

transmitter. Now we will create the receiver for those commands. In Listing 9-27, we

have our receiver that awaits an event, the rx.recv().await; this will await events and

continuously run and wait for the next event. Incidentally, this forever await is also why

we don’t have to add a loop{} in the main.rs, because this await is going to be waiting

indefinitely for the next command to appear.

Listing 9-27. Our receiver await processing, code in file manager.rs

pub type Tx = mpsc::Sender<Action>; ①
pub type Rx = mpsc::Receiver<Action>;

#[cfg(feature = "ch09")]

pub async fn run(mut rx: Rx,

 led_controls: &Arc<Mutex<LedControls>>,

 atmospheric: &Arc<Mutex<Atmospheric>>) {

 // Receives the information

 while let Some(action) = rx.recv().await { ②
 info!("Received :: {:?}", action);

 // now let's parse out what should happen.Action

 match action { ③
 Action::ShowTemperature => {

 display_weather(&atmospheric, &led_controls);

 },

Chapter 9 SenSe hat

466

 Action::Print(display) => { ④
 match display {

 Display::Halloween => {

 display_halloween(&led_controls);

 },

 Display::Christmas => {

 display_christmas(&led_controls);

 },

 Display::Text(text) => {

 display_text(text, &led_controls);

 },

 Display::QuestionMark => {

 question_mark(&led_controls);

 }

 }

 },

 }

 }

}

 ➀ Defines transmitter and receiver types of Action; this is used as a type

shortcut in the other modules to know the type of transmitter being

sent; it could be any struct or enum, but they have to be the same

struct/enum for each channel.

 ➁ Awaits the receiver for transmitted data.

 ➂ Matches our Actions.

 ➃ Matches our Displays.

Finally in Listing 9-28, everything we have been working on in this section comes

together. The sensor struct you created is now called by the various commands we

passed through. For each command we add, we will have to create a corresponding

function that processes and handles. Your logic should mostly still occur in producers;

this is merely to handle the interactions the board provides.

Chapter 9 SenSe hat

467

Listing 9-28. Processes each of the messages, code in file manager.rs

fn question_mark(led_controls: &Arc<Mutex<LedControls>>) {

 //let mut led = Arc::get_mut(&mut led_controls).unwrap();

 let mut led = led_controls.lock().unwrap();

 led.question();

}

// Display Christmas tree for 30 seconds

fn display_christmas(led_controls: &Arc<Mutex<LedControls>>) {

 let mut led = led_controls.lock().unwrap();

 led.display_symbol(&CHRISTMAS_TREE, 30);

}

 // Display pumpkin tree for 30 seconds

fn display_halloween(led_controls: &Arc<Mutex<LedControls>>) {

 let mut led = led_controls.lock().unwrap();

 led.display_symbol(&HALLOWEEN, 30);

}

fn display_weather(atmospheric: &Arc<Mutex<Atmospheric>>, led_controls:

&Arc<Mutex<LedControls>>) {

 let mut atmo = atmospheric.lock().unwrap();

 let temp: String = atmo.get_temperature();

 let mut led = led_controls.lock().unwrap();

 led.display(&temp);

}

// Display any text

fn display_text(text: String, led_controls: &Arc<Mutex<LedControls>>) {

 let mut led = led_controls.lock().unwrap();

 led.scroll_text(&text);

}

This section gives us the start to being able to expand functionality to the board

as well as expand background processing that will be necessary when we add other

modules to the Pi. Pis are powerful computers, so don’t be afraid to create a multi-

threaded device so long as you keep all the memory and borrowing safeguards in place.

Chapter 9 SenSe hat

468

 Logging In
We can now interact with the board devices, but we need to be able to interact more with

all those endpoints we created in the first half that require a user. In order to interact

with the services, we are going to have an authenticated user. The authenticated user

will allow us to send a request token to the server to verify our users and verify they have

access to box.

In Chapter 6, we went over the device authentication flow. In that chapter, we

showed via curl commands and the web UI interactions how to perform a device flow

authentication with Auth0. In this chapter, we are going to use those interactions into

our code and integrate it into our Raspberry Pi application.

 Yup OAuth 2
There are quite a few different authentication crates for Rust out there, and I looked

through a few different ones. The yup-oauth2 is one of the more popular and has a solid

diverse set of functionality in it. My main choice for picking it however is that none of the

other crates had the necessary level of interaction that yup-oauth2 did for device flows.

Remember, a device authentication flow calls to the server to get a code, returns that

to the user, and then keeps checking back to the server to make sure the user has been

authenticated. This was not the code I wanted to customize myself.

The only downside to yup-oauth2 is it seemed very much geared to the Google

OAuth 2 Device Flow, which probably makes sense in terms of percentage of usage;

however, that meant out of the box it did not work for our needs. Mainly there was one

critical thing that needed to be customized, the name of the device_code sent; this

field is not configurable, and we needed to configure them because Auth0 expects it to

be device_code and Google just expects it to be code, different for Auth0. The code is

hard-coded throughout yup-oauth2, so the only way to make this work was to branch

this off. Once again, we will have to use a modified version; you can find that version at

https://github.com/nusairat/yup-oauth2/. They are doing quite a few changes; in

fact, from the time I started to write this chapter to finishing this book, the code changed

drastically, and they are constantly improving the crate.

Chapter 9 SenSe hat

https://github.com/nusairat/yup-oauth2/

469

Let’s talk about the flow we are going to code to our device:

• On startup of our application, the application will check for a valid

JSON Web Token stored in the filesystem; if it exists and is valid, you

will just proceed as normal and be considered logged in.

• If the token does not exist, then call out to Auth0 to get a device code

to use for authentication.

• Display the device code on the LCD so that the end user knows what

the device code they need to use is.

• In the background, periodically check to see if the user has been

authenticated.

• Once authenticated, proceed to the next steps.

Luckily, most of this comes out of the box for us to use and will only require us

configuring the application. For the authentication functionality we will create its

own library. This will allow us greater reuse in terms of writing other apps that need

authentication as well.

Since the authentication has to communicate directly with the LedControls and it’s now

in its own library, this presents another problem but gives us a new learning experience;

how do we have the LedControls we created in the previous section interact with the

library? The solution is we will use traits that will configure how to display the logic, which

in reality really is a better way since apps may want to write the output differently.

Let’s get this app started though. Since this application will not be part of the main Pi

application, but instead will be a library referenced by it, let’s start by creating a library.

We still use the cargo new like we normally do, but now we pass in a --lib flag which

generates a lib.rs instead of a main.rs. In Listing 9-29, we generate this application.

I’d put this in the same level that your other applications are in; it will be useful later

when we have to reference it.

Listing 9-29. Creating a rasp-auth library package

➜ cargo new rasp-auth --lib

 Created library `rasp-auth` package

➜ ls -al rasp-auth/src

total 8

drwxr-xr-x 3 joseph staff 96 Dec 15 16:28 .

Chapter 9 SenSe hat

470

drwxr-xr-x 6 joseph staff 192 Dec 15 16:28 ..

-rw-r--r-- 1 joseph staff 95 Dec 15 16:28 lib.rs

We have created the library; now let’s update the Cargo.toml file to the contents in

Listing 9-30.

Listing 9-30. Creating a rasp-auth library package

[package]

name = "authentication"

version = "0.1.0"

authors = ["Joseph Nusairat <joseph@nusairat.com>"]

edition = "2018"

[dependencies]

yup-oauth2 = {git = "https://github.com/nusairat/yup-oauth2.git", branch =

"chore/fix-merge-errors"}

tokio = { version = "0.2", features = ["fs", "macros", "io-std", "time"] }

chrono = "0.4"

log = "0.4"

This will include all the dependencies we need for this section; you will notice for the

yup-auth2 I am referencing the git directory for my fork that has the necessary changes

to support Auth0.

For our library, all the code we will be writing next will be contained in the lib.rs

file. The code is not that long and it’s all performing a singular operation, so it did not

make sense to add multiple modules.

 Authentication Library
This library is going to have to do essentially three things:

 1. Be a wrapper to run the authentication system so that we can

minimize our code in the Pi app.

 2. Create a flow specifically to be used for Auth0 and a device flow

procedure.

 3. Implement the use of a generic wrapper for display.

Chapter 9 SenSe hat

471

Before we start coding, let’s discuss a bit how yup-auth0 works. The yup-auth0 crate

requires you populate a few structs before you run the authorization:

• ApplicationSecret – This contains the endpoint for the

authorization and auth orization URIs as well as any SSL certs and

client IDs and secrets.

• FlowDelegate – One of the traits we will be customizing. There is a

more specific trait for our use, DeviceFlowDelegate. The delegate is

used to help the OAuth system to determine what to do at each phase

of the authentication flow. It controls the flow for the following events:

• When user code is presented

• Request code is expired

• Pending

• Denied

• DeviceFlowAuthenticator – Builds our authenticator that will take

in the DeviceFLowDelegate and also set where we plan to store the

persisted token to.

Each of these builds up on one another until we have our authorization ready to be

executed. The JSON token being persisted allows us to have an easy way to access the

token between restarts and software failures without forcing the user to constantly re-

authorize. And bonus with this crate is that it will check for an existing token, and if valid,

it will not ask the user to have to go through the authorization flow again. Once executed,

we will execute the future in tokio, awaiting retrieving the final token. In Listing 9-31, we

have the authentication method that will implement this.

Listing 9-31. The authentication method

 pub async fn authenticate(&self) -> bool

 where VD: VisualDisplay + Send + Sync { ①
 // Trait needed for the futures use

 info!("Authenticate");

 // Create our application secret

 let application_secret = ApplicationSecret { ②
 client_id: self.client_id.clone(),

Chapter 9 SenSe hat

472

 client_secret: self.client_secret.clone(),

 token_uri: format!("https://{}/oauth/token", self.url),

 auth_uri: format!("https://{}/authorize", self.url),

 redirect_uris: vec![],

 project_id: Some(PROJECT_ID.to_string()), // projectId

 client_email: None, // clientEmail

 auth_provider_x509_cert_url: None, // X509 cert auth provider

 client_x509_cert_url: None, // X509 cert provider

 };

 // Create the flow delegate

 let flow_delegate = Auth0FlowDelegate { ③
 output: self.output.clone()

 };

 let auth = DeviceFlowAuthenticator::builder(application_secret) ④
 .flow_delegate(Box::new(flow_delegate))

 .device_code_url(format!("https://{}/oauth/device/code",

self.url))

 .persist_tokens_to_disk(JSON_SECRET_LOCATION)

 .grant_type("urn:ietf:params:oauth:grant-type:device_code")

 .build()

 .await

 .expect("authenticator");

 // Set our scopes of data we want to obtain

 let scopes = &["offline_access", "openid", "profile", "email"]; ⑤

 match auth.token(scopes).await { ⑥
 Err(e) => warn!("error: {:?}", e),

 Ok(t) => info!("token: {:?}", t),

 }

 // Unblocked now, let's blank out before we return

 let mut output_ctrls = self.output.lock().unwrap(); ⑦
 output_ctrls.clear();

 true

 }

Chapter 9 SenSe hat

473

 ➀ Used to define the VisualDisplay we are passing through (we will get

to this more in a bit).

 ➁ Defines the ApplicationSecret as well as setting our URIs that are

Auth0 specific.

 ➂ The FlowDelegate; here we are using a custom struct so that we can

display the pin to the Sense HAT.

 ➃ Creates the authenticator which takes the flow delegate as well as

the JSON location to persist to disk on a successful authentication

and to be reused on refresh. This also takes in our grant_type that is

specific to Auth0.

 ➄ The scopes we need to add to get all the tokens we need in the

response; you may recall these are the same scopes we used in

Chapter 6.

 ➅ Runs authentication of a user for the given scopes and with the

configurations we created in step 4.

 ➆ Clears out our LCD display which may have had the device code

displayed.

This method will run the basic authentication; as you can see, this has quite a few

moving parts that we need to go over:

• VisualDisplay – Will be our trait that defines the input

• Access – Will be the struct that this function will be an

implementation on.

 VisualDisplay

As stated, we need to make the display become generic, specifically because of our

application needing to display to an LED output, but this also makes the authentication

a more reusable library for different front-end devices that want to display the user data.

In the future, you could reuse this module and change from our LED display to an LCD

display or an Android display, without having to change the authentication module. In

Listing 9-32, we are defining three functions for a trait needed to display.

Chapter 9 SenSe hat

474

Listing 9-32. The VisualDisplay trait

use yup_oauth2::{self, ApplicationSecret, DeviceFlowAuthenticator}; ①
use yup_oauth2::authenticator_delegate::{DeviceAuthResponse,

DeviceFlowDelegate};

use log::{info, warn};

// Used to pin that data to a point in memory, makes sure it's a stable

memory location

use std::pin::Pin;

use std::future::Future;

// Always store to this location

const JSON_SECRET_LOCATION: &str = "tokenstorage.json"; ②
// Probably should be a command line parameter

const PROJECT_ID: &str = "rustfortheiot"; ③

pub trait VisualDisplay { ④
 fn clear(&mut self);

 fn display_text(&mut self, text: &str);

 fn display_processing(&mut self);

}

 ➀ Imports needed for this crate.

 ➁ JSON secret storage location; you can share this location between the

apps running to be able to send authentication requests.

 ➂ The name of our project id that we defined in Auth0.

 ➃ Visual Display trait.

We define three methods on that trait:

• clear – To clear out the display, blanking the screen so that whatever

output we have doesn’t stick around.

• display_text – Displays any output text that we want to display. This

can be the user code or an error response.

• display_processing – Used to display an output saying the input is

processing right now.

Chapter 9 SenSe hat

475

All of these cover all the use cases for displaying to the user the status via the LED

display; this methodology of using a trait also allows us to add on to it as need be.

 Entry Point Struct

Next, we are going to go over a struct that will be created in order to instantiate our

access into this application. This will be an Access struct; it will contain information

specific to your individual authentication application. In Listing 9-33, we have that initial

structure.

Listing 9-33. The Access struct that is our public input into the application

pub struct Access<VD> {

 client_id: String,

 client_secret: String,

 url: String,

 output: Arc<Mutex<VD>>

}

The first three items are directly related to your individual Auth0 accounts, and you

will need to plug in your own values when we instantiate the Access. The fourth, the

output, is what is driving our input to the display device. Since we are performing multi-

threaded access, we are also wrapping it in an Arc<Mutex<T>> call.

Now in Listing 9-34, we are going to define the implementation to this. You’ve

actually already seen one of the methods we will put into the impl, it’s the authenticate

function we defined earlier. But now, let’s define the where clause for the impl as well

as a method to instantiate it. The where clause is necessary so that the compiler knows

certain traits are on the VisualDisplay and are needed by subsequent calls in these

functions (I generally prefer using new whenever the function is being accessed outside

of the immediate module).

Listing 9-34. Defining the impl for the Access struct

impl<VD> Access<VD>

 where

 VD: VisualDisplay + Send + Clone + 'static ①
{

Chapter 9 SenSe hat

476

 pub fn new(client_id: String, client_secret: String, url: String,

output: Arc<Mutex<VD>>) -> Access<VD> { ②
 // retrieve the access tokens if they exist

 Access {

 client_id: client_id,

 client_secret: client_secret,

 url: url,

 output: output

 }

 }

 ➀ Defining the conditions the VisualDisplay will have to implement to

be used in our application.

 ➁ The new function to create an Access struct.

The Send, Clone, and 'static are needed because the VisualDisplay is going to be

used in various phases of the Auth life cycle, and they are required to by the future call,

making use of the Send trait, and the flow delegate, which requires the Clone trait. This is

a pretty standard procedure for Rust and allows us to enforce traits that need to be on the

property that is being passed. In addition, the method we defined in Listing 9-31 will be

part of this implementation.

At this point, you have almost all that is needed for authentication, one final set of

code to implement for here, and that is to create our own flow delegate.

 Auth0 FlowDelegate
The final set of code is our implementation of the FlowDelegate; there are really two

reasons we need to create our own flow delegate:

 1. We need to overwrite the default settings to use Auth0-specific

properties instead of Google-specific properties on the JSON

authorization request.

 2. We want to customize the output of the device code to the

LED display instead of just to the console log which is the

default.

Chapter 9 SenSe hat

477

In order to output to the LED display, we are going to have to pass in our

VisualDisplay in order for the code to have access. In Listing 9-35, we set up the struct

that we instantiated in the authentication method.

Listing 9-35. Defining the Auth0FlowDelegate

use std::sync::{Arc, Mutex};

// Flow Delegate requires a Clone

#[derive(Clone)]

pub struct Auth0FlowDelegate<VD> {

 output: Arc<Mutex<VD>>

}

The struct is now set up; we now need to implement the FlowDelegate trait which

will make this application work. In Listing 9-36, we start the implementation of the

FlowDelegate.

Listing 9-36. The implementation for Auth0FlowDelegate

impl<VD> DeviceFlowDelegate for Auth0FlowDelegate<VD> ①
 where

 VD: VisualDisplay + Send + Sync ②
{

 /// Display to the user the instructions to use the user code

 fn present_user_code<'a>(③
 &'a self,

 resp: &'a DeviceAuthResponse,

) -> Pin<Box<dyn Future<Output = ()> + Send + 'a>> {

 Box::pin(present_user_code(&self.output, resp))

 }

}

 ➀ Defines that we are implementing Auth0FlowDelegate for the

FlowDelegate trait.

 ➁ The clone is needed for any properties used in the FlowDelegate and

that is why we need to add it to our VisualDisplay.

 ➂ Sends a call to display our user code to the LED display.

Chapter 9 SenSe hat

478

The last thing we need to do is output the device code. Since our Pi only has an LED

display, we are going to need to output to the LED the device code in order for the end

user to know what to do. We will output it with the format “ > [DEVICE CODE]”; ideally,

you would tell the user in an instruction manual that they have to authenticate when

they see dashes come across the screen. In Listing 9-37, we implement the present_

user_code to perform that functionality.

Listing 9-37. The present_user_code function on the Auth0FlowDelegate

implementation

async fn present_user_code<VD>(output: &Arc<Mutex<VD>>, resp:

&DeviceAuthResponse)

 where

 VD: VisualDisplay {

 use chrono::Local;

 info!("Please enter {} at {} and grant access to this application",

resp.user_code, resp.verification_uri); ①
 info!("You have time until {}.", resp.expires_at.with_timezone(&Local));

 // Push to the ED Display

 let mut output_unwrap = output.lock().unwrap(); ②
 let text = format!("> {} ", resp.user_code);

 // Bit of a fake since it will stop processing after this function

 output_unwrap.display_text(text.as_str()); ③
 output_unwrap.display_processing(); ④
}

 ➀ Print out to the logger the user code and verification URL; this is to

make easier for our debugging purposes.

 ➁ Get the output VisualDisplay that we passed in to the authorization.

Here we unwrap and lock which is needed to get the object from

Arc<Mutex<T>>.

 ➂ Output the device code to our LED display. This will give the user a

visual representation of the device code they need to log in.

 ➃ Change the UI to display a “is processing” image that is repetitive.

Chapter 9 SenSe hat

479

In a perfect world, you’d probably repeat the code or add other queues or a way to

repeat if necessary. I didn’t want to overly complicate the code so I will leave it to the

reader to do that part. Our library is now complete; we can switch back to integrating this

code into the Raspberry Pi application.

 Raspberry Pi App Integration
The final step is to integrate with the Raspberry Pi application itself. Luckily, with the way

we designed our library file, this is a pretty easy task. The first thing you need to do is set

up a few more argument matchers to store our client id, secret, and auth URI. I am not

going to implement them here (we’ve done it plenty of times), but the names for what we

are creating are in Table 9-3.

Ideally, you can check in all the property values but the client_secret , this you

should set dynamically on start. Even more, you’d probably want to have it in something

like a vault repository. Next, we need to implement a struct that implements the

VisualDisplay since the library has no knowledge that we have an LED matrix to display

to. In Listing 9-38, we implement the trait for the LedVisualDisplay.

Listing 9-38. Implement the LedVisualDisplay that is for our authentication;

code is in main.rs

impl authentication::VisualDisplay for LedControls {

 fn clear(&mut self) {

 // let mut led_control_unwrap = self.led.lock().unwrap();

 // led_control_unwrap.blank();

 self.blank();

 }

Table 9-3. Arguments used for the Authentication

Name Short Description

auth_client_id -i Will store the client id for the Auth0 device flow we set up early.

auth_client_secret -t Will store the client secret for Auth0.

auth -a the UrL for our Auth0 account; for my application, I set the default

to rustfortheiot.auth0.com.

Chapter 9 SenSe hat

480

 fn display_text(&mut self, text: &str) {

 // let mut led_control_unwrap = self.led.lock().unwrap();

 // led_control_unwrap.scroll_text(text);

 self.scroll_text(text);

 }

 fn display_processing(&mut self) {

 // let mut led_control_unwrap = self.led.lock().unwrap();

 // led_control_unwrap.processing();

 self.processing();

 }

}

You will notice we are able to just apply the VisualDisplay trait onto the LedControls;

this adds the extra functionality and allows us to simply pass in the LedControls to

the authentication module. In Listing 9-39, I have the final set of code that will call the

authentication library using those parameters passing in the LedControls.

Listing 9-39. The run_authentication function that is in our main.rs of our Pi

application

#[tokio::main]

async fn run_authentication(matches: &ArgMatches) {

 use authentication::Access;

 info!("Run Authentication ...");

 // Initialize the LED controls

 let led_controls = Arc::new(Mutex::new(LedControls::new()));

 let client_id = matches.value_of(args::auth_client_id::NAME).unwrap().

to_string();

 let client_secret = matches.value_of(args::auth_client_secret::NAME).

unwrap().to_string();

 let url = matches.value_of(args::auth0::NAME).unwrap().to_string();

 let access = Access::new(client_id, client_secret, url, led_controls);

Chapter 9 SenSe hat

481

 // Authenticate

 if access.authenticate().await == false {

 error!("Not Logged In:");

 }

}

 Summary
In this chapter, we greatly expanded the ability of our Pi device with the added Sense

HAT hardware. We now have a device that can communicate securely with the backend

as well as perform various local interactions. As we continue, we will make use of the

authentication module to transmit and receive data.

Chapter 9 SenSe hat

483
© Joseph Faisal Nusairat 2020
J. F. Nusairat, Rust for the IoT, https://doi.org/10.1007/978-1-4842-5860-6_10

CHAPTER 10

Camera
In the previous chapter, we added our SenseHat which contains six types of sensors,

and we made use of the humidity, barometric, and joystick sensors. This allowed us to

have a more intelligent Pi. In this section, we are going to add an additional peripheral,

the camera. The camera is probably the most important peripheral when writing an

application whose main feature is video and still capture.

But what we want to capture is still a question; when dealing with most aftermarket

solutions, they tend to focus on a few approaches of the type of video content to capture:

 1. Capture all the video. Everything the camera sees is captured

to video and then stored locally, in the cloud, or on a network

file system. This allows the user to have maximum set of video.

Oftentimes, the video stored locally will get rotated out; in

addition, cloud service providers also rotate the video content out.

Although if you are storing video to S3, the cost for storage these

days is not too pricey; however, you will be paying quite a bit in

the data transfer of uncompressed video files. And sometimes

that isn’t worth it; it often depends on what you want to capture.

Oftentimes, this cost can be too much and you just want to

capture stills. Your standard camera will capture 24–30 frames per

second (FPS). This makes for nice smooth motion, but we don’t

always need that and are OK just capturing 1 frame per second.

This won’t look smooth; nothing you’d necessarily want to post

as a live video, but if your camera is there to just record someone

breaking in or monitoring access, it will give you everything you

need. This saves on processing time as well as on upload and

storage cost.

https://doi.org/10.1007/978-1-4842-5860-6_10#DOI

484

 2. Capture video when there is motion. Another solution that is

popular is to capture motion only. This solution is used to not only

minimize storage and transport cost but also to minimize the time

someone is needing to review video for. With this solution for a

monitoring system, you will only have to review when there was

motion. In addition, one can also capture stills on a slower frame

rate to preserve space even more.

Both methods can be used in conjunction with facial recognition to enhance the

videos – to know when there is a person at the location as well as to perhaps know

who the person is. These two methods or combinations of those (like capture stills

unless there is active movement and then start capturing full frames) can create quite a

dynamic set of use for video in our application. In addition, you can combine Pis, each

with cameras to get more complete pictures of an area.

 Goals
There is a plethora of use cases that can be applied to using camera capture and OpenCV

in particular. If I covered all the cases the code and the chapter could go on forever, and

alas we still have some other topics to cover. But I wanted to make sure the reader had

all the tools needed to create as dynamic as an application as they want when writing on

their own. To that end the goals for this chapter is to add the camera to our Raspberry

Pi that will capture all video and apply facial detection to pictures. In addition it will

capture a jpeg image if a face is detected at a rate of once every 5 minutes. In detail our

goals are :

 1. Installing the Raspberry Pi Camera

 2. Turning on the camera and capturing video

 3. Running face detection on the video

 4. Saving the video to a new file and intervals

 5. Saving an image file on facial detection

Chapter 10 Camera

485

 Facial Recognition
Facial recognition has become extremely popular in day-to-day basis, from unlocking

your phones to tracking who comes to your door with a Nest/Ring camera. Facial

detection can even help you track your employees’ whereabouts. In addition, it can

simply be used by your camera to determine whether the motion detected was a car

going by or a person walking. This latter part generally being more useful.

Facial detection in modern days is usually done two different ways. The first way is

through machine learning. The machine learning can either use trained or pre-trained

networks to detect user faces. These use neural networks to learn how to detect ones face

and require the images fed into the network. TensorFlow is the most standard library

used for network training and running, and the tensor team does have rust crate for use.

However, that would at least need an entire chapter if not more dedicated to it as neural

networks is a quite complex model to give any justice to.

Instead we will use an older concept that still uses some training, Open Computer

Vision (OpenCV). OpenCV can actually work in conjunction with deep learning as well,

but is also designed to interact with the camera directly and won’t require us to have

to use a different crates to read from the camera first. We can do it all in one. Thus for

the book we are going to choose to use OpenCV for our camera capture, detection, and

saving of video and images.

 Installation
There are many different cameras for the Pi you can purchase, from the very basic to

the ones that have night vision. And of course, they all range in price. The one we are

using for the book and had you buy in Chapter 1 is a 5 megapixel very basic camera that

should cost around $10 (https://amzn.com/B07QNSJ32M). Regardless of what you buy, as

long as it has a 15-pin MIPI Camera Serial Interface (CSI) connector, you will be able to

connect it to the board. Each board has one 15-pin connector specifically for cameras.

To start with, power down the Pi, and carefully detach your SenseHAT. Set it aside

for now and let’s find the connector for the camera. If you look at the board closest to the

Ethernet ports, you will notice a cable attachment, as shown in Figure 10-1.

Chapter 10 Camera

https://amzn.com/B07QNSJ32M

486

Figure 10-1. Showing the board where the connector is and connected all the
way

You should be able to pull up on the connector; this will allow a separation that

you can then fit the cable through. Now you can insert the ribbon cable, and it is very

important to do this with the correct side; it only goes in one way. The ribbon without

the prongs will face the Ethernet port (on mine, it’s the blue side). You need to do this the

correct way; if not, the camera will not work at all. The ribbon connected properly will

look like Figure 10-2.

Chapter 10 Camera

487

Figure 10-2. Camera connected to the board

The flip side with the connections will be toward the USB-C ports, and you can see

that in Figure 10-3.

Chapter 10 Camera

488

Figure 10-3. Camera connected to the board

Now you can complete it by putting the SenseHat back on top roping the cable

through like in Figure 10-4.

Chapter 10 Camera

489

Figure 10-4. Connector pulled through with SenseHat on

The camera is now fully connected, but one final step in order for the Pi to recognize

the camera is we need to update the config.txt to tell it to turn on the camera.

Remember, this file is on the SD card itself, and you will have to take the card out and

plug in to your own computer to update config.txt on the card. You will add the line

start_x=1 like in Listing 10-1 to your config.txt. You will have to take out the disk from

your Pi in order to have access to the file when mounted to your other computer.

Chapter 10 Camera

490

Listing 10-1. Enable the camera in the /boot/config.txt on the Raspberry Pi

start_x=1

If you want to quickly test to make sure the camera is working, you can log onto your

Pi and run raspistill -o testshot.jpg; this will take an image and save the still to

testshot.jpg, from their secure copy (via scp) it back to your computer, and you can

check it out. Now that we have the camera installed on the Raspberry Pi, we can start

coding against it. But before we actually dive into the code, we will need to prep our build

system to be able to compile OpenCV libraries for the Raspberry Pi. In order to accomplish

this, we are going to switch gears and use the cross crate to build the application.

 Cross
In the previous chapters, we have been performing the cross compilation for the Pi

creating a MUSL capable application. This tends to work well for testing or building

applications where the underlying system is not under your control. MUSL gives the user

greater compatibility and uses static linking of libraries to build and run the application.

But there is another option in our cross compiling ways, and that is glibc which has been

around for decades has tight controls into the x86 world. You do have to have a tighter

control of the operating system to use glibc; however, since we are going to create an

installable ISO in a few chapters that contains the OS and the application, we will have

that tight control needed. Using the gnu compilers might also make sense if you are on

a Linux system right now as well. You can perform this changing your target right now

if you want to compile the application (of course currently, it might fail since all the

necessary libraries aren’t installed).

This notion of the library installation keeps coming back to haunt us. And in this

chapter, we will be adding OpenCV libraries, which means we will need even more

libraries installed to compile the application, and their musl/gnu equivalents to cross

compile with – if only there was an easier way.

Luckily, there is. We are going to use a docker container that has all of our necessary

libraries in it to be able to compile our application. Docker is a great solution, and we

will use it later as well when creating our custom ISO image in the final chapter. In

the previous chapters, we used a combination of installs and configurations to get the

application to be cross compiled. This works, but also means if you are on a team of

developers, you will have to make sure they all follow the same instructions; in addition,

Chapter 10 Camera

491

if they are on different computers, it adds to the confusion. Using the local builds

worked well earlier on, but using docker to cross compile will help us create more easily

reproducible builds and allow us to properly run the builds in a build system later on (we

won’t cover that in this book but is usually part of the process).

If we used docker on our own, it would pose a bit of a challenge. While we’d have

to build the image with our code being copied and compiled. Once it’s built, we’d then

need to connect to a running container of that image to retrieve compiled artifact off and

then stop the image being run. This is very messy; luckily, there is a crate that wraps all

this logic into a nice neat crate to use, cross.

 Rust Embedded – Cross Crate
The rust-embedded project on GitHub is a plethora of great libraries and tutorials for

doing embedded application development. The cross crate is specifically designed

to help us cross compile the application for multiple systems (https://github.com/

rust-embedded/cross). Cross will allow us to cross compile in docker images with the

output of the target being stored on the local file system. And while the first run of the

cross compiler can be slow (in order to pull down docker images), subsequent runs are

very fast. The beauty of cross is it gives us all the benefits of cross compiling and adding

dependent libraries without the headache of having to add them explicitly to our local

system and being also forced to include the cross compiler libraries.

Running cross is easy; you will need to have docker installed, but we already have it

installed in previous chapters. And then in Listing 10-2, we will install the cross binary

which is used for cross compiling.

Listing 10-2. Installing cross

➜ cargo install cross

 Updating crates.io index

 Package `cross v0.1.16` installed,

 Using Cross

Cross is almost too easy to use; it essentially uses the same commands as the Cargo CLI

works with. In previous examples, we built with cargo build --target armv7- unknown-

linux-musleabihf; using cross, we would simply build with cross build --target armv7-

unknown-linux-musleabihf. The only exception will be when it starts up the first time,

Chapter 10 Camera

https://github.com/rust-embedded/cross
https://github.com/rust-embedded/cross

492

you will see the docker images getting downloaded. The same targets you have in your

normal cargo build you will also have in cross. In addition, you have a new file, the

Cross.toml, for more configurations. Cross.toml can be used to specify environmental

variables you want to pass in from your system to the underlying docker image.

In Listing 10-3, we pass through the RUST_BACKTRACE and a custom POSTGRES_URL to the

image. (Note: This is an example, and we don’t need this for our application.)

Listing 10-3. Environmental variables being passed in via the Cross.toml file

[build.env]

passthrough = [

 "RUST_BACKTRACE",

 "POSTGRES_URL",

]

Under the covers, it has a docker image for each target defined and thus a

corresponding Dockerfile for each image. We aren’t going to review the contents of

those files, but if you want to, here are two locations to look at:

https://hub.docker.com/r/rustembedded/cross/tags – This is the actual docker

hub location, with all the available image tags to use.

https://github.com/rust-embedded/cross/tree/master/docker – This is the

directory that contains the source files for those docker images. If you dive into a few of

them, you will see the base image they use (often Ubuntu) and what libraries they are

adding. There is often quite a bit of overlap between the images, and are often bringing

in the same libraries but for different targets.

The tag directory is important to pay attention to, because that will be the image that

is used when targeting the build.

 Customizing

However, all of this wouldn’t be very helpful if we couldn’t add our own library

dependencies. And we can do exactly that with the application. Inside the Cross.toml

we defined earlier, you can overwrite the docker image for a custom docker image to

target your application. You will add a target.{TARGET_NAME} field along with the image

inside the toml file. In Listing 10-4, we overwrite the target for armv7-unknown-linux-

gnueabihf with a custom image that we will build shortly that will include the OpenCV

libraries.

Chapter 10 Camera

https://hub.docker.com/r/rustembedded/cross/tags
https://github.com/rust-embedded/cross/tree/master/docker

493

Listing 10-4. Overwrites the target for armv7-unknown-linux-gnueabihf, in

Cross.toml file

Custom Library with Authenticator in it

[target.armv7-unknown-linux-gnueabihf]

image = "opencvs-auth:musl"

This creates our custom image. Now there is no need to create your own docker file

with Rust and cargo installed. The easiest is to pick an image we already want to use and

use that as our base image. Since this chapter is about the camera and using OpenCV,

those are the library files we need to compile with the application. For us, our base image

will be a variant of rustembedded/armv7-unknown-linux-gnueabihf. The out-of-the-box

Gnu library uses Ubuntu as the base image, but I wanted to use Debian instead so I took

the base image, slightly tweaked it, and pushed it to docker hub. The docker hub location

of this image is at https://hub.docker.com/repository/docker/nusairat/images/

general.

We will use this as our base image; just remember it’s just a branch of the armv7 gnu

build. Let’s go through and start building our image for the Raspberry Pi master app.

Our goal is to have this work on a 32-bit Arm7 operating system; to that end, you will

notice we pull the arm hard float armhf version of libraries as opposed to the arm64. I

would advise not to be tempted to use the 64 bit since 64-bit support on Raspberry Pis

is not full featured or that good. Also much of the following set of Docker code we are

creating is based off of the work done on Paul’s blog that can be found here: https://

solarianprogrammer.com/2018/12/18/cross-compile-opencv-raspberry-pi-

raspbian/. He also has instructions how to cross compile OpenCV for a Pi Zero. I wanted

to make sure to give the proper credit; there were a few nuances (like some re-namings)

and some of the extra library installs that I would have spent far too long figuring out

without it.

The entire file is located in the rasp-pi-app-master folder, but let’s dive into the

individual parts. In Listing 10-5, we have our FROM tag from the custom GNU Debian

image I mentioned earlier. This is how we start every Dockerfile.

Listing 10-5. From for our application, in the Dockerfile

FROM nusairat/cross:arm7-gnu-debian

FROM nusairat/cross:arm7-musl-debian

Chapter 10 Camera

https://hub.docker.com/repository/docker/nusairat/images/general
https://hub.docker.com/repository/docker/nusairat/images/general
https://solarianprogrammer.com/2018/12/18/cross-compile-opencv-raspberry-pi-raspbian/
https://solarianprogrammer.com/2018/12/18/cross-compile-opencv-raspberry-pi-raspbian/
https://solarianprogrammer.com/2018/12/18/cross-compile-opencv-raspberry-pi-raspbian/

494

From there in Listing 10-6, we install the ArmHf architecture needed to compile and

use against an ArmHf OS and device. This will be needed because the libraries we pull in

will need to be compiled to ArmHf since that is our target.

Listing 10-6. Install the binaries to compile the ArmHf architecture, in the

Dockerfile

RUN dpkg --add-architecture armhf

RUN apt-get update && apt-get install -y qemu-user-static

We then install the necessary Python libraries in Listing 10-7 to compile the

application. While we won’t be using Python directly, it was needed by the underlying

OpenCV crate to interface with the OpenCV libraries.

Listing 10-7. Install the python binaries, in the Dockerfile

RUN apt-get install -y python3-dev

RUN apt-get install -y python3-numpy

RUN apt-get install -y python-dev

RUN apt-get install -y python-numpy

#We'll also need libpython for the armhf architecture:

RUN apt-get install -y libpython2-dev:armhf

RUN apt-get install -y libpython3-dev:armhf

In addition, there are also misc libraries used for image manipulations and codecs

that OpenCV calls in order to do perform its processing on videos; we will install those

next in Listing 10-8.

Listing 10-8. Necessary image manipulations and codecs, in the Dockerfile

RUN apt-get install -y libtiff-dev:armhf zlib1g-dev:armhf

RUN apt-get install -y libjpeg-dev:armhf libpng-dev:armhf

RUN apt-get install -y libavcodec-dev:armhf libavformat-dev:armhf

libswscale-dev:armhf libv4l-dev:armhf

RUN apt-get install -y libxvidcore-dev:armhf libx264-dev:armhf

install the default cross compilers from Debian which can be used to

create armhf binaries for Raspberry Pi:

Chapter 10 Camera

495

RUN apt-get install -y crossbuild-essential-armhf

RUN apt-get install -y gfortran-arm-linux-gnueabihf

Install CMAKe etc

RUN apt-get install -y cmake git pkg-config wget

Finally, we get to downloading the OpenCV source code and preparing it for

compilation. We use CMAKE to set the options we want for the OpenCV. I have included

mostly default options as well as installing the necessary libraries. The OPENCV_

GENERATE_PKGCONFIG is necessary to work with the OpenCV crate. There are quite a few

steps in this process, so in Listing 10-9, I break down the various steps.

Listing 10-9. The download and OpenCV install, in the Dockerfile

WORKDIR /root

①
RUN mkdir opencv_all && cd opencv_all \
 && wget -O opencv.tar.gz https://github.com/opencv/opencv/
archive/4.1.0.tar.gz \
 && tar xf opencv.tar.gz \
 && wget -O opencv_contrib.tar.gz https://github.com/opencv/opencv_
contrib/archive/4.1.0.tar.gz \
 && tar xf opencv_contrib.tar.gz \
 && rm *.tar.gz

②
variables required to successfully build GTK+
ENV PKG_CONFIG_PATH /usr/lib/arm-linux-gnueabihf/pkgconfig:/usr/share/
pkgconfig
ENV PKG_CONFIG_LIBDIR /usr/lib/arm-linux-gnueabihf/pkgconfig:/usr/share/
pkgconfig

At this point, we can use Cmake to generate the OpenCV build scripts:
RUN cd /root/opencv_all/opencv-4.1.0 \
 && mkdir build && cd build

③
WORKDIR /root/opencv_all/opencv-4.1.0/build
RUN cmake -D CMAKE_BUILD_TYPE=RELEASE \
 -D CMAKE_INSTALL_PREFIX=/opt/opencv-4.1.0 \

Chapter 10 Camera

496

 -D CMAKE_TOOLCHAIN_FILE=../platforms/linux/arm-gnueabi.toolchain.

cmake \

 -D OPENCV_EXTRA_MODULES_PATH=~/opencv_all/opencv_contrib-4.1.0/

modules \

 -D OPENCV_ENABLE_NONFREE=ON \

 -D ENABLE_NEON=ON \

 -D ENABLE_VFPV3=ON \

 -D BUILD_TESTS=OFF \

 -D BUILD_DOCS=OFF \

 -D PYTHON3_INCLUDE_PATH=/usr/include/python3.7m \

 -D PYTHON3_LIBRARIES=/usr/lib/arm-linux-gnueabihf/libpython3.7m.so \

 -D PYTHON3_NUMPY_INCLUDE_DIRS=/usr/lib/python3/dist-packages/numpy/

core/include \

 -D BUILD_OPENCV_PYTHON2=OFF \

 -D BUILD_OPENCV_PYTHON3=ON \

 -D BUILD_EXAMPLES=OFF \

 # Needed for the rust app

 -D OPENCV_GENERATE_PKGCONFIG=ON ..

④
#Make the application

RUN make -j16

RUN make install/strip

 ➀ Download the OpenCV 4.1.0 archive and untar the file.

 ➁ Create necessary environmental variables for build and directories.

 ➂ Run cmake based on our configurations that include python and the

necessary libraries.

 ➃ Compile the OpenCV library (this will take a bit of time).

Lastly, in Listing 10-10, we do some final copying of files to the right location as well

as copying in the OpenCV package config file. This just defines the library directories

and lib startup flags for the application. This is custom created and based partially on the

libraries we installed earlier. I haven’t included it here only because the one line is 814

characters long and is just listing out the libraries.

Chapter 10 Camera

497

Listing 10-10. Defining the finally copying of the files, in the Dockerfile

Change the name since it was mislabeled by the installer

①
RUN cd /opt/opencv-4.1.0/lib/python3.7/dist-packages/cv2/python-3.7/ \
 && cp cv2.cpython-37m-x86_64-linux-gnu.so cv2.so

②
Copy opencv-4.1.0-armhf.tar.bz2 and opencv.pc from your home folder to
your Raspberry Pi.
RUN cd /opt \
 && tar -cjvf ~/opencv-4.1.0-armhf.tar.bz2 opencv-4.1.0

③
Creates a Pkg-config settings file
WORKDIR /root
Copy in the OPENCV from our file system
COPY opencv.pc opencv.pc

Move the opencv.pc we copied in
RUN mv ~/opencv.pc /usr/lib/arm-linux-gnueabihf/pkgconfig

④
This is where our gnuebihf config will be
ENV PKG_CONFIG_PATH /usr/lib/arm-linux-gnueabihf/pkgconfig/
ENV OPENCV_PACKAGE_NAME /usr/lib/arm-linux-gnueabihf/pkgconfig/opencv.pc
ENV LD_LIBRARY_PATH /opt/opencv-4.1.0/lib
ENV PKG_CONFIG_ALLOW_CROSS 1

 ➀ Renamed since the installer doesn’t give it the correct name.

 ➁ Copies the built OpenCV to the /opt directory.

 ➂ Copies our local version of the package config.

 ➃ Sets the environmental variables needed for the Rust build.

This will finish up our Dockerfile and includes everything needed to compile

OpenCV as well as allows us to cross compile from our PC/Mac to a 32-bit Raspberry Pi

system. However, before we can use it with cross, we need to build the docker image. In

Listing 10-11, we build the docker image, tagging it as opencvs-auth:musl (the same tag

we referenced earlier in the Cross.toml).

Chapter 10 Camera

498

Listing 10-11. Docker build for our custom image used to create an environment

to build our application

➜ docker build -t opencvs-auth:musl .

Sending build context to Docker daemon 1.741GB

Step 1/36 : FROM armv7-unknown-linux-musleabihf:debian

 ---> 33af951b181a

Step 2/36 : RUN dpkg --add-architecture armhf

 ---> Using cache

 ---> 661ffd2fde76

...

Step 36/36 : ENV PKG_CONFIG_ALLOW_CROSS 1

 ---> Running in f7b7742b4571

Removing intermediate container f7b7742b4571

 ---> 58e0118e604e

Successfully built 58e0118e604e

Successfully tagged opencvs-auth:musl

Now we are able to use the image in our cross build. In Listing 10-12, we run cross

targeting the armv7-unknown-linux-gnueabihf and assuming you did everything right it

should cross compile.

Listing 10-12. Cross compiling build using the image we created previously

➜ cross build --target=armv7-unknown-linux-gnueabihf

 Compiling libc v0.2.66

 Compiling autocfg v1.0.0

 Compiling proc-macro2 v1.0.8

 ...

 Compiling rasp-app v0.1.0 (/project)

 Finished dev [unoptimized + debuginfo] target(s) in 7m 19s

The result of the cross compile outputs to the local directory structure just like if

you used a standard cargo build. You can view the directory structure of the result in

Listing 10-13.

Chapter 10 Camera

499

Listing 10-13. View the output of our build

➜ ls -al target/armv7-unknown-linux-gnueabihf/debug

total 246576

drwxr-xr-x 10 jnusairat 334330370 320 Feb 11 21:50 .

drwxr-xr-x 3 jnusairat 334330370 96 Feb 11 21:42 ..

-rw-r--r-- 1 jnusairat 334330370 0 Feb 11 21:42 .cargo-lock

drwxr-xr-x 161 jnusairat 334330370 5152 Feb 11 21:42 .fingerprint

drwxr-xr-x 27 jnusairat 334330370 864 Feb 11 21:42 build

drwxr-xr-x 403 jnusairat 334330370 12896 Feb 11 21:50 deps

drwxr-xr-x 2 jnusairat 334330370 64 Feb 11 21:42 examples

drwxr-xr-x 3 jnusairat 334330370 96 Feb 11 21:48 incremental

-rwxr-xr-x 2 jnusairat 334330370 113688176 Feb 11 21:50 rasp-app

-rw-r--r-- 1 jnusairat 334330370 553 Feb 11 21:50 rasp-app.d

The final result produces a file that is 113 MB (if you have the OpenCV crate

configured in your application). We don’t have that quite yet, but I wanted us to have the

compiling of the application ready, so when we start building in the next section, you

can also start testing. Since we are ready, let’s not waste time and let’s start building the

application.

 Open Computer Vision
Before we dive into coding, let’s expand on our conversation about what OpenCV is.

OpenCV was originally designed by Intel in the 1990s, released in 1999, to help with

real-time computer vision. Computer vision is more than just grabbing computer

frames from a computer and recording to file or displaying them on another screen. The

purpose is to allow the processing and analyzing of the video the camera records. In

the beginning, this was mainly used to analyze objects and extract edges, lines, and 3D

modelling from the video. In essence, the computer would be able to analyze and tell

the user what it saw. The computer could describe the shapes, colors, and so on. The

application of this is useful for monitoring, for assisting the visually impaired, and even

for defense. Over the decades, CV has grown to make use of deep learning and other

advanced algorithms to detect faces and the world around you. Cameras have become a

very powerful tool because they are now relatively cheap, meaning you can easily have

Chapter 10 Camera

500

multiple and can tell quite a bit about the world around you. For example, Tesla uses

only cameras around the car to run its self-driving system.

While we won’t be creating anything near as advance as that, the potential

applications for an OpenCV system on your Raspberry Pi are endless with the right

amount of coding, processing, and storage. This gives us the gateway to create a powerful

application with less than $100 worth of hardware.

 Installing OpenCV
We previously installed OpenCV for our Docker build but not for our local. While we

won’t need this to compile the application for the Pi, it’s useful for testing purposes,

and since OpenCV isn’t platform dependent, we can use this code locally and on our Pi.

When running locally, it will use your computers’ built-in camera (assuming you have

one). The easiest installation for OSX is to use brew; you can perform that install with

brew install opencv. There are quite a bit of various instructions on how to install

OpenCV on other platforms; you can search the https://docs.opencv.org/ site to find

the instructions for whichever platform you are using.

Now let’s add OpenCV to our application’s Cargo.toml. The Rust crate can be used

for any version of OpenCV above 3.2; we will be targeting the most recent, OpenCV 4.x;

as such in Listing 10-14, we include that feature into our build.

Listing 10-14. The OpenCV crate with additional features, in Cargo.toml

For writing out EXIF data

#rexiv2 = "0.9.0"

[dependencies.opencv]

version = "0.29"

default-features = false

features = [

 "opencv-4",

 "buildtime-bindgen",

]

In addition to the OpenCV 4 crate, we are including the buildtime-bindgen feature.

This module is only needed for development when building on Windows or OSX; once

Chapter 10 Camera

https://docs.opencv.org/

501

you are ready to deploy the Pi, it can be removed or at least commented out (although it

won’t hurt anything if it’s kept in).

 Running the Application
Let’s review what we are planning to build with the OpenCV system; our application

won’t be too advanced, but it’s also not the most basic either. This application will do the

following things:

• Capture the video from an attached camera.

• Display to a local screen (for development).

• Run facial recognition on the screen.

• Record the video in chunks.

• Save an image when a face is detected at a given interval.

• Show the current date and time on the recorded video.

All of these will give a breath of information on how to create your one camera

capturing application. The code is going to be mostly in one function, but we will break

off the discussion into usable chunks; you can always refer to the source code to see the

entire listing.

Most of the code we are going to be writing will be in one file, the src/camera/video.rs

file. In Listing 10-15, we have the imports, mostly importing from the opencv crate.

Listing 10-15. Imports for our video capturing, in src/camera/video.rs

use std::{thread, time::Duration};

use opencv::{

 core,

 highgui,

 imgproc,

 objdetect,

 prelude::*,

 types,

 videoio,

};

Chapter 10 Camera

502

use opencv::videoio::{VideoCapture, VideoWriter};

use opencv::objdetect::CascadeClassifier;

use opencv::calib3d::UndistortTypes;

Much of the application will be in the run_face_detect function where we will pass

in a boolean which is used to decide whether we should open up a window to see what

we are recording. This is useful for debugging locally, but we do not want it running on

the Raspberry Pi since we have no attached devices to view. In Listing 10-16, we have this

outline.

Listing 10-16. The skeleton outline of our function, in src/camera/video.rs

const MINUTES_BETWEEN_IMAGES: i64 = 1;

const MINUTES_BETWEEN_NEW_VIDEO: f64 = 0.5;

const FPS_FACTOR: f64 = 0.5;

// can run a Haar Cascade on the image

pub fn run_face_detect(show_window: bool) -> opencv::Result<()> {

 info!("Start face detection ...");

 loop { }

}

The loop will be where we continuously run the video capture and processing; before

we do that, we need to get into some setup that occurs before the loop. We will have to

initialize a few things:

• The window to display the output to

• The camera to capture from

• Initialization of our writers to capture the video to

• Initialization of our face detection

We will tackle each of these in the following sections so part of the code will reside

before the loop and the others inside the loop; I’ll call it out where the code goes when

need be.

Chapter 10 Camera

503

 Capturing the Video

Let’s start with capturing the content of the video camera; this will require us having

OpenCV connect to the camera and reading content from it. In Listing 10-17, we capture

the content from the index of the capture devices. The default is 0, and since we only

have one camera we are capturing from, we can set it there. The next parameter is the

reader implementation; this can be DSHOW, MSFMF, or V4L, but again the default that we

are using is ANY.

Listing 10-17. The camera initialization, in src/camera/video.rs

let mut cam = videoio::VideoCapture::new_with_backend(0, videoio::CAP_ANY)?;

// 0 is the default camera

// Open the camera

let opened = cam.is_opened()?;

if !opened {

 panic!("Unable to open default camera!");

}

Then inside the loop, we will capture the video frame by frame. After you capture

each frame, you could write it back to a file, or you could do post processing on it; it’s

really up to the user at that point (we will do both in a bit). In Listing 10-18, we capture

from the camera frame by frame.

Listing 10-18. Capturing the video content onto a frame, in src/camera/video.rs

let mut frame = Mat::default()?;

cam.read(&mut frame)?;

// Sleeps in case there is no screen coming

if frame.empty().unwrap() {

 debug!("frame empty? camera not initialized?");

 thread::sleep(Duration::from_secs(50));

 continue;

}

Chapter 10 Camera

504

You will notice we check if that frame has any width; if there is none, we wait for 50

seconds and retry. The reason is if there was no width, that would be because the camera

hasn’t started up or some IO operation is temporally blocking it, giving it that delay gives

the system time to have the camera ready. We will manipulate this frame in a bit.

 Displaying to the Camera

Next up, let’s add in the camera monitor. This is not necessary to have unless we want to

watch the output of the video recording during debugging; hence, why we will wrap all

these calls in an if flag? Ideally, you would turn this on via command-line arguments

defaulting to false. The display is all driven by the opencv::highgui libraries. In Listing

10-19, we initialize the call to that library.

Listing 10-19. Initializing our call to open a window to capture the video, in src/

camera/video.rs

let window = "video capture";

if show_window {

 highgui::named_window(window, 1)?;

}

And then inside the loop we pass the frame to the window that was created in

Listing 10-20.

Listing 10-20. Show the window of the video captured, in src/camera/video.rs

if show_window {

 highgui::imshow(window, &frame)?;

 // can be used for a bit of a delay

 if highgui::wait_key(10)? > 0 {

 break;

 }

}

At this point, we have the camera capturing out video and then returning it to our

monitor; however, we still have not performed any processing of the video.

Chapter 10 Camera

505

 Capturing the Facial Recognition

Let’s change that now and apply some processing to the video frames that we are

receiving so that we can detect the people’s faces. We will use OpenCV and Haar

Cascades to not only detect whether or not the display on the screen is a face but also

where those faces are and to put a rectangle around them. This is often also done with

deep learning; with deep learning, you have to perform the learning part of it as well, and

this actually requires quite a bit of work in not only determining what you are looking

for but the tolerance of differences in the patterns. We don’t really have time for it in this

book to cover training, but we do have time to cover how to use a pre-trained cascade

algorithm. And to that extent, we are going to use pre-trained face detection algorithms

to apply to our frames in order to detect faces.

While the science of face detection is relatively new, the math we use behind it is over

a century old. Neural networks were first proposed in 1873 and 1890 by Alexander Bain

and William James, respectively. They produced the theoretical basis on how neurons fired

together and much of the basis for neural networks today. There are a variety of neural

networks from temporal neural networks to convolution networks. Convolution neural

networks use mathematical operations to produce the output of the neural network. For

our facial detection, we will be using something similar; we will be using what is called

Haar feature to perform the facial detection. The Haar feature is just like a kernel in

convolution neural networks, except a Haar feature is manually trained and calculated.

Haar sequences were first theorized by the Hungarian mathematician Alfred Haar in

1909. He created an orthonormal system for the space between square functions. These

concepts were then brought together by Paul Viola and Michael Jones in there 2001

paper "Rapid Object Detection Using a Boosted Cascade of Simple Features". The basis

of the Haar features is to use the black and white (or gray-scale) differences between

horizontal and vertical lines to calculate patterns.

If you think about your face and the shading of it, we have natural horizontal and

vertical lines in it. You essentially have three different types of features. Your edge

features are where one side is dark and the other is light; you can think of your eyebrows

or nose as one. You also have line features where you have one side light, middle dark,

and next light; your lips closed would be an example. All of these features work vertically

or horizontally. And you can even have four rectangle features as well. What this

reduction does is it reduces all our calculations to looking at most four pixels (edges have

2, lines 3, rectangles 4). Take our beautiful model in Figure 10-5 also known as my wife.

This is a gray-scaled image of her.

Chapter 10 Camera

506

Figure 10-5. Shows the original picture

Now let’s apply some lines drawn to quite a few pixels based on edge and line

features; the white will be the lighter and the black will represent the darker area in

Figure 10-6.

Chapter 10 Camera

507

Figure 10-6. Shows the original picture with the edge/line features

Now in a pure black and white image, these would be simply zeroes or ones.

However, people’s faces aren’t generally distinguishable black and white so we use a

gray scale. In a 24x24 pixel window, we can receive over 160,000 features; this is quite a

bit to process and wouldn’t be usable in real time. But with the Viola-Jones algorithm,

we can break it down to 6000 features; you can even have 200 features for 95% accuracy.

This is because most videos you take the face is not the major component that is coming

into play; much of it is external noise that can be eliminated. The way they went about

making this optimization is by running the 6000+ features over 38 stages. At each stage, if

nothing is detected, then the classifier moves on to another part of the image. So to find a

face in the preceding image, you may see it go through various parts of the frame without

finding a face. Interestingly to note, the first five stages look through 111 features, broken

Chapter 10 Camera

508

up as 1-10-25-25-50 features at each stage. The idea is to fail fast on the majority of the

areas where there would be blank space. This optimization is what makes the classifiers

very fast and able to run in real time. And this is the basis for the code we will be writing

next to create the facial detection.1

Using Trained Cascades

Using this logic, you can create not only facial recognition but even emotion recognition

or even determine if someone is smiling or not. Now all of these are based on the

calculation of patterns. Like we stated earlier, these are manually trained algorithms, and

many of these algorithms have been published for general public consumption. OpenCV

publishes a list of Haar Cascades that we we can use for our applications; they are

published at https://github.com/opencv/opencv/tree/master/data/haarcascades.

For our application, we will be using the haarcascade_frontalface_alt.xml; you

should download this to our local file system. In Listing 10-21, we load up this classifier

in order to apply it to our face.

Listing 10-21. Loading up the Haar Cascade into our application, in src/camera/

video.rs

if !std::path::Path::new(&haar_cascade_file).exists() { panic!("Haar

Cascade is needed!"); }

let mut face = objdetect::CascadeClassifier::new(&haar_cascade_file)?;

Running the Cascade

Now that we have the cascade, we just need to apply it to our classifier. Remember even

the inexpensive camera we installed is in color, and as we just went over, the classifier

uses gray scale for its variant calculations. So before we run the classifier on the frame,

we are going to need to convert the frame to gray scale. In addition, high-resolution

cameras will have more pixels, and while there is potentially greater accuracy, this will

take the face detector longer to process each image. Therefore, in addition to converting

the image to gray scale, we are going to reduce the size of the frame we process on. In

Listing 10-22, we convert to gray scale and then resize the image passing in the gray-scale

color.

1 https://docs.opencv.org/3.4/db/d28/tutorial_cascade_classifier.html

Chapter 10 Camera

https://github.com/opencv/opencv/tree/master/data/haarcascades
https://docs.opencv.org/3.4/db/d28/tutorial_cascade_classifier.html

509

Listing 10-22. Converting the frame to gray scale and resizing the frame, in src/

camera/video.rs

let mut gray_frame = Mat::default()?; ①
imgproc::cvt_color(

 &frame,

 &mut gray_frame,

 imgproc::COLOR_BGR2GRAY,

 0

)?;

// Resizes an image.

// The function resize resizes the image src down to or up to the

specified size.

let mut reduced = Mat::default()?; ②
imgproc::resize(

 &gray_frame,

 &mut reduced,

 core::Size {

 width: 0,

 height: 0

 },

 0.25f64, ③
 0.25f64,

 imgproc::INTER_LINEAR

)?;

 ➀ Converts the frame to a gray scale.

 ➁ Reduces the gray frame to smaller more manageable size.

 ➂ The scale factor to use; here we pass in .25 so we reduce the image

by 3/4.

The reduced variable will now contain our reduced gray-scale image. We can now

take the face object we created based on the Haar Cascade and run the face detection

matcher on it. If a match is found, it will return a set of rectangle boxes for each face

it matches in the frame. The set will not only tell us if there is a face on the frame but

will also tell us where the face is. This will allow us to dynamically create a rectangle

Chapter 10 Camera

510

bounding box that will be visible on the application. In Listing 10-23, we apply the

bounding box onto the original full-size color frame using the coordinates found.

Listing 10-23. Bounding box of the face applied to the frame, in src/camera/video.rs

let mut faces = types::VectorOfRect::new();

face.detect_multi_scale(①
 &reduced,

 &mut faces,

 1.1,

 2,

 objdetect::CASCADE_SCALE_IMAGE,

 core::Size {

 width: 30,

 height: 30

 },

 core::Size {

 width: 0,

 height: 0

 }

)?;

• Run the face detection on the frame detecting faces of different sizes

returning a list of rectangles for it.

• Calculate the squared coordinates multiplying the coordinates by a

factor of 4 since we reduced the previous by a 1/4.

• Draw a rectangle on the original frame.

We now have a working face detector, and in fact, if you run this with the show_

window enabled, you will see the face bounding box dynamically appear and will follow

your face around the camera. You can go ahead and move the face around to see the

limits of the Haar Cascade (it’s not very good at side face detection).

 Saving the Video Content

We have the camera now capturing and running facial recognition software on the

image, but beyond that, it doesn’t do much with the video but just allows us to watch it

Chapter 10 Camera

511

in real time. In addition, we created an entire backend whose main purpose is to capture

video. So let’s give the backend video something to capture. In this section, we will save

the video. This part can get a bit tricky to get the capture right. You need to make sure the

frames you are capturing are getting output to the same rate you are writing. There is also

a delay because you aren’t just getting the video you capture and immediately dumping

it into the new file. We will do our best to make this smooth, although I’ve noticed some

delay in using it as well. However, OpenCV comes with all the libraries to create a new

video, so we won’t have to rely on anything else to save the captured video. In order to do

so, we need to know a few things about the video we want to create:

• Height

• Width

• Frames per second

• Codec

The first three are fairly easy; since we aren’t applying any lasting resize to the frame,

we will just use the height and width of the video that we are receiving. The frames per

second we also will retrieve from the video we are reading from, but then apply a factor

to it to make the timing appear smoother. You may have to set that factor yourself. In

Listing 10-24, we use these three factors to create the size and fps variables.

Listing 10-24. Calculate the size and FPS of the video, in src/camera/video.rs

let width = cam.get(videoio::CAP_PROP_FRAME_WIDTH).unwrap();

let height = cam.get(videoio::CAP_PROP_FRAME_HEIGHT).unwrap();

let fps = cam.get(videoio::CAP_PROP_FPS).unwrap() * FPS_FACTOR;

info!("Camera Settings : {:?} x {:?}, with {:?} fps", width, height, fps);

// Size for the output

let size = core::Size {

 width: width as i32,

 height: height as i32

};

For the codec, there are a variety of codecs we can use; however, we will have to

pick one that works best for the system you are working on; for ours, I’m using the H264

codec, since that codec is widely supported by web browsers, and in the future, you may

Chapter 10 Camera

512

want to review the videos from the Web. There is a huge variety of codecs you can use;

a complete listing is on the fourcc page at www.fourcc.org/codecs.php. I’ve created a

helper method in Listing 10-25 to create the four-CC code for our application.

Listing 10-25. The fourcc code, in src/camera/video.rs

fn fourcc() -> i32 {

 videoio::VideoWriter::fourcc('m' as i8, 'p' as i8,'4' as i8,'v' as i8).

unwrap()

}

In addition, for the name of the file, we will use a dynamic name based on the date/

time in Listing 10-26. We could have used a UUID, but in these cases, I prefer a more

readable name when debugging.

Listing 10-26. Dynamically creating the video filename, in src/camera/video.rs

fn create_file_name() -> String {

 let now: DateTime<Utc> = Utc::now();

 let date = now.format("%d.%m.%Y_%H.%M.%S");

 format!("{}/video-{}.mp4", media_dir, date)

}

Before we start the loop, initialize the writer. The writer will start up a file that will

encode for the size, fps, and codec we supplied. Additionally, we don’t want to send out

huge files to the servers, so we are going to chunk the files in dynamic increments set as

constant variables. I would recommend 15–30-min chunks; it all depends on you, although

for testing 30 seconds to one minute is easier. In Listing 10-27, we set the initialized start of

the video writer; these fields then get passed to the handle_video function.

Listing 10-27. Initialize the video writer, in src/camera/video.rs

let mut writer = videoio::VideoWriter::new(create_file_name().as_str(),

fourcc(), fps, size, true)?;

// Frames per second, for a minute, times how many minutes

let frames_per_file = fps * ONE_MIN_IN_SECONDS * MINUTES_BETWEEN_NEW_VIDEO;

info!("Will create {:?} frames per a file", frames_per_file);

Chapter 10 Camera

http://www.fourcc.org/codecs.php

513

Inside of the handle_video function in Listing 10-28, we use i to start counting the

frames detected so we know when to save the video and create another video to start instead.

Listing 10-28. Starts the loop for the video capture, in src/camera/video.rs

let mut i : f64 = 0f64;

let mut start_time: DateTime<Utc> = Utc::now();

let mut file_name = "none".to_string();

loop {

And finally, when the frames_per_file variable we set equals the amount of frames

we processed (i), we will close the video file writer (via release) which will trigger all the

contents to be saved to that filename and then start a new writer (Listing 10-29).

Listing 10-29. Save video to a file and start a new file, in src/camera/video.rs

writer.write(&mut frame)?;

fn record(writer: &mut VideoWriter, frames_per_file: f64, size: core::Size,

fps: f64,

 i: &mut f64, start_time: &mut DateTime<Utc>,

 mut frame: &mut Mat, file_name: &mut String) ->

opencv::Result<()> {

 // Write it locally with the file

 writer.write(frame)?; ①

 if *i == frames_per_file {

 info!("Created File : from {:?} to {:?}", start_time, Utc::now());

 writer.release()?; ②
 *file_name = create_file_name();

 *writer = videoio::VideoWriter::new(&file_name.as_str(), fourcc(),

fps, size, true)?; ③
 *start_time = Utc::now();

 *i = 1f64;

 }

Chapter 10 Camera

514

 else {

 *i = 1f64 + *i; ④
 }

 Ok(())

}

 ➀ Writes the frame to the video writer.

 ➁ Releases the video lock flushing the contents to the file system.

 ➂ Creates a new video writer with a new filename that should be

unique.

 ➃ Each frame that gets run gets incremented.

This code exists at the end of our loop we created, but now we save to the file system

a video of us with rectangles around the face.

 Apply Text to the Video

When looking at the videos later, it may be nice to know the date/time the video was

taken. In addition to a bounding box, we will also write to the screen the date/time

(if you want to get real adventurous, you could also add the temperature). We use the

put_text command in Listing 10-30 to apply the text to the screen. There are quite a

few options you can pass in including the font, location, and color of the text. We will do

mostly defaults for this in Listing 10-30.

Listing 10-30. Drawing the date/time onto the frame, in src/camera/video.rs

let now: DateTime<Utc> = Utc::now();

let date = format!("TS: {}", now.format("%d/%m/%Y %H:%M.%S")); ①

// scalar is the color / true : for bottom left origin

let point = core::Point::new(10, 20); ②
imgproc::put_text(&mut frame,

 date.as_str(),

 point,

 highgui::QT_FONT_NORMAL, ③

Chapter 10 Camera

515

 0.8,

 // BGR .. reverse of RGB

 core::Scalar::new(0., 0., 255., 0.), ④
 2,

 imgproc::LINE_8,

 false)?; ⑤

 ➀ The date time formatting.

 ➁ The location where to put it on the screen; these are the x/y

coordinates to start the display.

 ➂ The font to choose from; we are choosing the standard normal QT font.

 ➃ The RGB color to pick, but the field is set in reverse byte order so

BGR. In this case, it will be red.

 ➄ Whether to reverse the image.

In Figure 10-7, you can get an idea of the display you will be recording when a face is

detected on the screen, with the date and timestamp appearing as well.

Figure 10-7. Shows the picture with the facial bounded box and the date
timestamp

Chapter 10 Camera

516

 Saving the Image Content

Finally, let’s see an example of saving just one frame to an image. Most of this work is to

simply give us an example of saving an image. I don’t want an image saved every second

or even hour; we will save the image every time there is a face detected. The code here is

a bit opinionated in when to save. The rules for saving an image in Listing 10-31 will be

that if a face has been detected in the frame, and we have not seen a face for a prescribed

length defined by the MINUTES_BETWEEN_IMAGES variable, we will save the image and

then reset the last_face_detect_time.

Listing 10-31. Saving the image and restarting the image writer, in src/camera/

video.rs

if !faces.is_empty() { ①
 // Send that the face was detected

 send(&mut face_tx, true);

 // is this our first face in a minute, save an image as well.

 // this part is only needed for start up

 debug!("IMAGE: Check for a face every {:?} minutes", MINUTES_BETWEEN_

IMAGES);

 match last_face_detect_time {

 Some(last_face_time) => {

 let next_image_time = last_face_time + chrono::Duration::

minutes(MINUTES_BETWEEN_IMAGES); ②
 info!("IMAGE: Last Time: {:?} / Next Detect Time: {:?}",

last_face_time, next_image_time);

 if Utc::now() > next_image_time { ③
 info!("IMAGE: Save image");

 if save_image(&frame).is_err() { ④
 warn!("Error saving the image to the file system");

 }

 // reset the time

 last_face_detect_time = Some(Utc::now());

 }

 },

Chapter 10 Camera

517

 None => { ⑤
 // first time detected save it off

 info!("IMAGE: Save first image");

 if save_image(&frame).is_err() {

 warn!("Error saving the image to the file system");

 }

 last_face_detect_time = Some(Utc::now());

 }

 };

}

 ➀ Checks if a face was found in the frame.

 ➁ Gets the time for the next image time; this is calculated by the last

time it was detected plus our duration.

 ➂ Checks if we should save off by seeing if that next image time has

passed.

 ➃ Creating a dynamic filename much like we did with the video and

saving it.

 ➄ The else is for the use case of the first time the Pi starts/restarts and

image is saved.

While the OpenCV will successfully create us a JPEG image, it does not add any EXIF

data on creation; in order to do so, we will need to make use of the rexiv2 crate. The

rexiv2 crate wraps around two external libraries gexiv2 and exiv2; those will need to be

installed on the cross compiler and also on your Pi itself. We won’t cover that here, but I

wanted to go over the code to make this work. With this, you will set multiple tags for the

images and then the crate will write that information to the image. In Listing 10-32, we

are only writing the "Make", but you could supply as much information as you’d like.

Listing 10-32. Calls the run_face_detect we’ve been coding, in src/camera/video.rs

use crate::errors::MyResult;

fn save_image(frame: &Mat) -> MyResult<bool> {

 use rexiv2::Metadata;

Chapter 10 Camera

518

 info!("IMAGE: Save image");

 let image_name = create_image_name(); ①
 let mut params = opencv::types::VectorOfint::new();

 params.push(opencv::imgcodecs::IMWRITE_JPEG_OPTIMIZE); ②
 // Need gexiv installed on the computer for this to work

 opencv::imgcodecs::imwrite(image_name.as_str(), &frame, ¶ms).

unwrap(); ③
 match opencv::imgcodecs::imwrite(image_name.as_str(), &frame, ¶ms) {

 Ok(_) => {

 // now save the meta data

 if let Ok(meta) = Metadata::new_from_path(image_name.as_str()) {

 // defined in main.rs

 meta.set_tag_string("Exif.Image.Make", crate::APP_NAME); ④
 meta.save_to_file(image_name).unwrap(); ⑤
 }

 },

 Err(e) => {

 error!("Error writing the file out :: {:?}", e);

 return Ok(false);

 }

 };

 Ok(true)

}

 ➀ Create a unique name for the image; this is based on the timestamp.

 ➁ Parameters for the image creation are set.

 ➂ OpenCV writes the frame to an image file.

 ➃ Set the Make portion of the Exif metadata.

 ➄ Save the file.

We could set more on there, but I will leave this up to you to implement. In addition,

you notice GPS is sadly missing. There are a number of options we could do here to make

it work. There are servers that will give you your location based on IP address; some

Chapter 10 Camera

519

cost money and some are rate limited. There is also an ability to use the Wi-Fi locations

around you to get your GPS coordinates, but I could never get this to work so I didn’t

include the code. Finally and your best option is you can buy a GPS HAT for your Pi.

 Calling the Video Processing

The last step is calling this from the main application; we will use tokio again to spawn

the processes; we will create inside the mod.rs for the camera library to call the function

we were just working. That way, you will be able to place the actual call as a single-line

call in main::run function. In Listing 10-33, we will spawn an async process to run the

face detector.

Listing 10-33. Calls the run_face_detect we’ve been coding, in src/camera/

video.rs

use crate::manager::{FaceTx};

const VIDEO_DIR: &str = ".";

pub fn run_video_capture(mut face_tx: FaceTx) {

 use tokio::task;

 debug!("Start spawn process ..");

 task::spawn_blocking(move || {

 // I want to see me

 debug!("Spawning ...");

 match video::run_face_detect(face_tx, false) {

 Err(err) => {

 error!("Error processing the face :: {:?}", err);

 },

 Ok(_) => {}

 }

 });

}

You will notice I am doing an error capture here; this is somewhat important since

there are OpenCV errors that can occur for a variety of reasons. Most of the reasons

relate to being able to open the camera or the monitor window. You can put some retry

logic in there, but that will be left to you.

Chapter 10 Camera

520

 Deploying to the Pi
After you have finished coding the camera addition to the Pi application, we will want to

deploy and run it. If you try to do that right now, you will be disappointed; it will fail with

an error like in Listing 10-34.

Listing 10-34. Running the application on the Raspberry Pi

./rasp-app: error while loading shared libraries: libopencv_calib3d.so.4.1:

cannot open shared object file: No such file or directory

This error is because we do not have OpenCV 4 installed on the Raspberry Pi, and it

will be another library we need to install. This library and procedure to install will be a

bit more time-consuming than our other installs (all said a little over an hour).2 For this

to work, we are going to install a few libraries to support the OpenCV and then install

and configure OpenCV from source.

To start with, let’s increase the swap size for the ram; normally, it’s set at 100, but to

build the OpenCV, it will make our lives easier if we increase it to 2048. In Listing 10-35,

we will sudo vi /etc/dphys-swapfile and increase the size to 2048.

Listing 10-35. Increase the size of the Swap

pi@raspberrypi:~ $ sudo vi /etc/dphys-swapfile

...

set size to absolute value, leaving empty (default) then uses computed

value

you most likely don't want this, unless you have a special disk

situation

CONF_SWAPSIZE=2048 ①
...

 ➀ This is the line to search for to adjust the size.

2 www.pyimagesearch.com/2019/09/16/install-opencv-4-on-raspberry-pi-4-and-raspbian-
buster/

Chapter 10 Camera

http://www.pyimagesearch.com/2019/09/16/install-opencv-4-on-raspberry-pi-4-and-raspbian-buster/
http://www.pyimagesearch.com/2019/09/16/install-opencv-4-on-raspberry-pi-4-and-raspbian-buster/

521

Next, we are going to have to add some libraries to make OpenCV work for us;

most of these libraries help us in creation of the videos, images, and so on. There are

additional files that will help for display that we will not be installing since we aren’t

attaching a display to the Pi. In Listing 10-36, we install the extra libraries needed.

Listing 10-36. Installing the necessary libraries; this will take about 5 minutes

pi@raspberrypi:~ $ sudo apt-get install -y build-essential cmake pkg-config ①
pi@raspberrypi:~ $ sudo apt-get install -y libjpeg-dev libtiff5-dev

libjasper-dev libpng12-dev ②
pi@raspberrypi:~ $ sudo apt-get install -y libavcodec-dev libavformat-dev

libswscale-dev libv4l-dev ③
pi@raspberrypi:~ $ sudo apt-get install -y libxvidcore-dev libx264-dev

pi@raspberrypi:~ $ sudo apt-get install -y libatlas-base-dev gfortran ④

 ➀ Standard libraries used for building and packaging compiled

applications.

 ➁ Libraries used for using and saving JPEG files.

 ➂ Libraries needed for the video IO packages and video streams.

 ➃ Libraries for operations in OpenCV, mostly matrix operations.

Now in Listing 10-37, let’s install the python libraries that we will reference later in

the build.

Listing 10-37. Installing the python libraries; this will take about 2 minutes

pi@raspberrypi:~ $ sudo apt-get install -y python3-dev

pi@raspberrypi:~ $ sudo apt-get install -y python3-numpy

 OpenCV Install
Now we have everything we need to actually download and install OpenCV. The version

we will install needs to be the same version we used in the previous section when

creating the docker image via cross build tool. For this book, we are using 4.1.0. In order

to build OpenCV, we need to download and install opencv and opencv_contrib; we will

download them both and unpackage them in Listing 10-38.

Chapter 10 Camera

522

Listing 10-38. Downloading OpenCV and OpenCV Contrib and unpackaging

the contents; this will take about 2 minutes

pi@raspberrypi:~ $ mkdir opencv_all && cd opencv_all \

 && wget -O opencv.tar.gz https://github.com/opencv/opencv/

archive/4.1.0.tar.gz \

 && tar xf opencv.tar.gz \

 && wget -O opencv_contrib.tar.gz https://github.com/opencv/opencv_

contrib/archive/4.1.0.tar.gz \

 && tar xf opencv_contrib.tar.gz \

 && rm *.tar.gz

To install the application, we are going to create a build directory, configure it,

and then compile and install the application. To do this, in Listing 10-39, we’ll start by

creating a build directory and switch to that directory.

Listing 10-39. Create the directory and change to that directory

pi@raspberrypi:~ $ cd opencv-4.1.0 && mkdir build && cd build

Now we will use cmake that we installed earlier to create our makefile and

configurations. The environmental arguments will mimic what we did earlier in cross;

the only major difference is that we will install it to /usr/local. In Listing 10-40, I’ve

included this configuration.

Listing 10-40. This configures the makefile to build OpenCV; this will take about

3 minutes

pi@raspberrypi:~ $ cmake -D CMAKE_BUILD_TYPE=RELEASE \

 -D CMAKE_INSTALL_PREFIX=/usr/local \

 -D OPENCV_EXTRA_MODULES_PATH=~/opencv_all/opencv_contrib-4.1.0/

modules \

 -D OPENCV_ENABLE_NONFREE=ON \

 -D ENABLE_NEON=ON \

 -D ENABLE_VFPV3=ON \

 -D BUILD_TESTS=OFF \

 -D BUILD_DOCS=OFF \

 -D INSTALL_PYTHON_EXAMPLES=OFF \

Chapter 10 Camera

523

 -D BUILD_EXAMPLES=OFF \

 -D PYTHON3_INCLUDE_PATH=/usr/include/python3.7m \

 -D PYTHON3_LIBRARIES=/usr/lib/arm-linux-gnueabihf/libpython3.7m.so \

 -D PYTHON3_NUMPY_INCLUDE_DIRS=/usr/lib/python3/dist-packages/numpy/

core/include \

 -D BUILD_OPENCV_PYTHON2=OFF \

 -D BUILD_OPENCV_PYTHON3=ON \

 -D OPENCV_GENERATE_PKGCONFIG=ON ..

If you are trying to build this on a Raspberry Pi Zero instead of a 4, it will take longer; in

addition, you will have to disable NEON and VFPV3 since they are not supported by the Pi

software. In addition, most of the timings I’ve estimated will be much longer on a Zero or Pi 3.

Now the part that will take the most time is making the binaries. This will take

roughly an hour, so go grab some food, a tea, and so on before starting. We will pass

in -j4 to make four threads to make use of the four cores on the Pi. In Listing 10-41,

we will make the binaries and install it.

Listing 10-41. This makes the binaries and installs it to the Pi; this will take

about 60 minutes

pi@raspberrypi:~ $ make -j4

pi@raspberrypi:~ $ sudo make install && sudo ldconfig

Now that OpenCV is installed, you will be able to run the application on the

Raspberry Pi.

 Summary
This chapter brought us all our interactions with the camera. This was not a terribly long

chapter but very important for the purpose of this book. We covered how to use OpenCV

to allow us to more easily develop an application that interacts with a camera. This saved

us quite a bit of custom development and makes that code more easily portable between

local development and the Pi. The final result was saving off video and images to our

local directory complete with timestamps and face detection on the videos. However, we

did not cover what to do with those images once saved. Right now, we are simply saving

them locally. In the next chapter, we will cover the processing of these images, and for

that, we will switch back to the MQTT module which will push the files to the cloud.

Chapter 10 Camera

525
© Joseph Faisal Nusairat 2020
J. F. Nusairat, Rust for the IoT, https://doi.org/10.1007/978-1-4842-5860-6_11

CHAPTER 11

Integration
In this chapter, we will be going over everything to do with finishing the integration. We

are not adding any new sensors to the Pi or any drastic functionality. What we are adding

is the ability to interact with these components as a unit. This chapter becomes very

important, because without it, we have many random one-off applications. This will tie

all these pieces into a more cohesive unit.

What pieces are we talking about? The core pieces of the Pi, the temperature sensor,

and the video camera which also can double as a motion sensor. We are going to tie

functionality between the Pi, the cloud, and an iPhone. This will be accomplished in

three ways:

 1. Uploading saved videos to the cloud; we need to upload the

videos to the cloud in a way that can withstand loss of backend

connectivity.

 2. Calling commands from the cloud. For recording, we want to

be able to control from the backend our ability to start and stop

recordings.

 3. Integrating our device with HomeKit to monitor the temperature

and to act as a motion sensor.

First is saving recordings; if you recall in Chapter 3, we wrote code for our cloud

backend that is used to accept video and image data, analyze the metadata, and save the

file. In the last chapter, we set up the code to write to the Pi’s hardware itself; it’s time we

send that data to the cloud to be stored in our upload_svc backend.

Next in Chapter 4, we had the MQ on the backend send recording commands to

the mqtt_service. To tell the system when to stop recording, start recording, since by

default, we are recording always. However, there are times you may not want to have

your cameras record. There are many reasons from privacy to space. In addition, we

will create the ability to have resilient solutions for sending to the cloud to handle cloud

downtimes or no Internet services on the Pi.

https://doi.org/10.1007/978-1-4842-5860-6_11#DOI

526

And finally, one last tie in; we are going to integrate the application with Homekit.

We will allow the device to communicate back the temperature as well as use the face

recognition as motion sensor to inform the Homekit user when there is motion.

This will all be done by some code and techniques you’ve seen before and by some

new frameworks and techniques. Let’s begin.

 Uploading Video
We have the video stored on the Pi and ready for upload; all we need to do is upload it

now, which in itself is a relatively simple task as long as the videos are small enough, but

there are other factors we have to worry about. For the most part, IoT applications can

communicate like most other backend applications would. However, one of the biggest

issues is the resilience of the Internet connectivity. While two backend servers (at least

network wise) have very high uptime availability, the service-level agreement (SLA) for

a home network is nowhere near the same. In addition, you are also dealing with home

hardware for the modems and routers. And finally, you can have power outages which

disrupt connections. Bottom line, we don’t want to lose video uploads.

The way we are going to solve this is the same way many IoT devices solve the issue

of wanting to send data over but have intermittent networks. This is very often the case

for vehicles that send driver and other data back to servers, since vehicles often move

into areas of no connectivity like garages or tunnels. And that is to use SQLite database.

Be aware there are other issues that in a bigger book we could tackle like the size of

the video. You could send each file in asynchronous chunks and then put them back

together again on the upload_svc. Also there are other ways to solve this without using

SQLite; however, SQLite is a commonly used database on micro hardware, and I wanted

to make sure we at least discussed its use in the book.

 SQLite
SQLite was originally designed to work as a database with damage control systems

aboard missile destroyer. It is a RDBS/ACID-compliant database system written in C

that it is designed to be used by embedded system, as opposed to your standard client-

server that most database you are used to. This means it’s designed to be accessed by

applications on the same system as the database as opposed to remote applications.

SQLite has been in use since 2000, and while it does perform quite a bit of the same

Chapter 11 IntegratIon

527

functions of a database, the database does not guarantee domain integrity. In addition,

there is no user/password access since it’s not designed to be accessed remotely; instead,

access is based on file system permissions.

The SQLite system implements most of the standard SQL-92 features; the big

difference comes in assigning and adding column values. It is not strongly typed;

therefore, you can insert integers into strings and strings into integers. This of course can

cause unexpected behavior if you do it incorrectly. So take care when you are designing

your application; luckily, our needs are relatively basic.

We are going to use it to store all videos and images that we have created and are

ready for upload, in addition, an indicator flag on whether the video has been uploaded

or not. The SQLite database will have many of the same SQL calls that you are used to; of

course, for our needs it’s very basic of one table that is easily updatable and insertable.

Another use case that is often used in conjunction with the SQL databases is in use

with the message queues, so that whenever a message fails to send for whatever reason,

it gets stored in the SQLite database for sending later.

After it’s inserted, we will run a background job to upload it to our servers at a set

interval. If this fails, we can then try again later. The retry count will be stored in that

database, and we can add code later to notify the user for quick uploading. This will

make the video availability not in real time, but that is OK for our needs.

 Design

With SQLite, we will create our database on initialization of the application. This will

store all the necessary information as well as a bit of metadata about the entry. We are

going to create two modules to handle the uploading: a db module that will handle all

the querying of data and updating on failures and then the send module that will upload

the file to the server. In order to code this, we are going to make use of SQLite crates as

well as crates for uploading the file to the server. In Listing 11-1, we have the four crates

needed.

Listing 11-1. Defining the SQLite and reqwest crates, in Cargo.toml file

Database Items

rusqlite = "0.21.0"

this version is needed to work for rusqlite

time = "0.1.38"

Chapter 11 IntegratIon

528

Used for sending the file to our server

reqwest = { version = "0.10.4", features = ["blocking"] }

Needed for linux bindings

openssl-sys = "0.9.54"

The final crate, openssl-sys, is needed in order to create secure connections to

the upload application. In addition, we will need to install SQLite and OpenSSL to our

docker container in order to cross compile the application. In Listing 11-2, we have the

additional apt-get needed for the application.

Listing 11-2. Defining the SQLite and OpenSSL, in Dockerfile

RUN apt-get install -y libsqlite3-dev:armhf

Install Open SSL needed for communication back to the UploadService

RUN apt-get install -y libssl-dev:armhf

This will give us the necessary libraries to create the application interfaces needed.

To run this on the Pi, you will need to install SQLite on there; you can do that with

sudo apt-get install -y sqlite3 command. In addition, in our db.rs file, we have

defined a constant location of /var/database for our database.

We won’t be creating a complex database system for keeping record of our videos;

instead, we will have one table that will store the metadata for our recordings. In

Table 11-1, I’ve listed out the fields that we will have in the database table.

Table 11-1. Database fields for our video entries

Name Description

file_name the name of the file that was stored by the video recorder.

uploaded Saved as an integer, but a boolean value of whether it’s updated.

retry_count the amount of times we’ve attempted to upload the video.

upload_time the time of successful upload.

recording_start passed by the video module of the time the video recording started.

recording_end passed by the video module of the time when the video recording ended.

Chapter 11 IntegratIon

529

 Creating the Interactions with the Database

Let’s start by creating the code to initialize the database. In Listing 11-3, this code will

create the initialization for the database, and we will also set up the struct to match the

database out.

Listing 11-3. Creating the struct and initializing the database, in src/camera/db.rs

use rusqlite::{params, Connection, OpenFlags, Result, MappedRows};

use time::Timespec;

use chrono::{DateTime,Utc};

use crate::errors::{DbResult, MyResult};

use log::{warn, error, info};

#[derive(Debug)]

pub(super) struct VideoEntry {

 file_name: String,

 uploaded: bool,

 retry_count: i32,

 upload_time: Option<Timespec>,

 recording_start: Timespec,

 recording_end: Timespec,

}

const PATH : &str = "rust-iot.db";

pub(super) fn initialize() -> bool {

 let conn = create_conn(OpenFlags::SQLITE_OPEN_READ_WRITE |

OpenFlags::SQLITE_OPEN_CREATE).unwrap();

 let size = conn.execute(

 "CREATE TABLE IF NOT EXISTS video_entry (

 file_name TEXT PRIMARY KEY,

 uploaded INTEGER,

 retry_count INTEGER NOT NULL,

 upload_time TEXT NULL,

 recording_start TEXT NOT NULL,

Chapter 11 IntegratIon

530

 recording_end TEXT NOT NULL

)",

 params![],

).unwrap();

 if size == 1 {

 true

 }

 else {

 false

 }

}

fn create_conn(flags: OpenFlags) -> Result<Connection> {

 Connection::open_with_flags(

 PATH,

 flags

)

}

We will run this each time the application is restarted and should be resilient to

failures. While it returns true/false, we will not do anything with the result. Next, let’s go

on a few application pieces that we will need to be able to make the app work. There are

really a few functions we need to code for:

• Adding an entry to the database; this is called from the video module.

• Uploading the video file.

• Marking an entry when successfully uploaded.

• Incrementing a counter when not successfully uploaded.

 Adding Entry to the Database

The first step is to add entries to the database; whenever we run the writer.release()

on the video module, we want to record an entry to the database to have the application

upload. In Listing 11-4, we code the database addition in the video module.

Chapter 11 IntegratIon

531

Listing 11-4. Add a video entry to the database when a file descriptor is released,

in src/camera/video.rs

writer.release()?;

db::add(&file_name, *start_time, Utc::now());

Now let’s code the method in Listing 11-5. The method will insert into video_entry a

reference to the file and defaulting upload to false and retry count to zero.

Listing 11-5. Add the video entry to the database, in src/camera/db.rs

pub fn add(name: &str, start: DateTime<Utc>, end: DateTime<Utc>) {

 let conn = create_conn(OpenFlags::SQLITE_OPEN_READ_WRITE).unwrap();

 let start_ts = Timespec {

 sec: start.timestamp_millis(),

 nsec: start.timestamp_subsec_nanos() as i32,

 };

 let end_ts = Timespec {

 sec: end.timestamp_millis(),

 nsec: end.timestamp_subsec_nanos() as i32,

 };

 let result = conn.execute(

 "INSERT INTO video_entry (file_name, recording_start, recording_

end, uploaded, retry_count)

 VALUES (?1, ?2, ?3, 0, 0)",

 params![name, start_ts, end_ts],

);

 match result {

 Ok(_) => {

 info!("Added {:?} to database", name);

 },

 Err(e) => {

 error!("Error Trying to insert into database :: {:?}", e);

 }

 }

}

Chapter 11 IntegratIon

532

 Uploading the Video File

Now that we have entries in the database, we will have to upload the files. We will write

code to upload the files on an hourly basis. On each hour, it will try to upload all the files

in the database, which includes files that failed previously. Once uploaded, the files will

then be available in the cloud.

In case of continuous failures or extremely slow uploads, there could be an issue

where the file system runs out of space, or those uploads due to slowness are trying two

at the same time. I have no program for these edge cases but should be thought of.

Let’s start with the code for the hourly upload; the code in Listing 11-6 will be called

from the main::run and will spawn a thread that hourly will call a function that sends

non-uploaded files to the server.

Listing 11-6. Code to upload hourly to the server, in src/camera/mod.rs

use uuid::Uuid;

const HOURLY: u64 = 60 * 60;

const BI_MINUTE: u64 = 60 * 2;

// Send our videos hourly to the cloud

pub fn hourly_upload(device_id: String, url: String) {

 use tokio::time::{Duration, interval_at, Instant};

 db::initialize();

 tokio::spawn(async move {

 // every other minute duration

 let mut interval = interval_at(Instant::now(), Duration::from_

secs(BI_MINUTE));

 loop {

 interval.tick().await;

 info!("Upload to the Server");

 let entries = db::retrieve_entries(device_id.as_str(),

url.as_str(), VIDEO_DIR);

 info!("Received entries : {:?}", entries);

 match db::send_to_server(entries.unwrap(), device_id.as_str(),

url.as_str(), VIDEO_DIR).await {

 Ok(_) => {},

 Err(e) => {

Chapter 11 IntegratIon

533

 error!("Error Sending to the Server {:?}", e);

 }

 }

 }

 });

}

You will notice why there is an interval delay; we start the timer now; that is because we

do not need it to upload on the hour, just want to space out the file upload. This function

calls send_to_server which is the main workhorse for the application; this will query the

database for entries and attempt to upload them. In Listing 11-7, we have the code to query

all the non-uploaded files and attempt to upload them to the backend server.

Listing 11-7. Code to send to the server, resetting the entries when not

uploaded, in src/camera/db.rs

pub(super) fn retrieve_entries(device_id: &str, url: &str, dir: &str) ->
DbResult> {

 use std::fs::remove_file;
 use futures::executor::block_on;

 let conn = create_conn(OpenFlags::SQLITE_OPEN_READ_ONLY)?;

 // Get the non-uploaded ones

 let mut stmt = conn.prepare("SELECT file_name, recording_start,
recording_end, uploaded, retry_count From video_entry Where

uploaded = 0")?; ①

 let entries = stmt.query_map(params![], |row| { ②
 // No upload time since it’s not uploaded yet

 Ok(VideoEntry {

 file_name: row.get(0)?,

 recording_start: row.get(1)?,

 recording_end: row.get(2)?,

 uploaded: row.get(3)?,

 upload_time: None,

 retry_count: row.get(4)?,

 })

 })?;

Chapter 11 IntegratIon

534

 for row in rows {

 entries.push(row.unwrap());

 }

 Ok(entries)

}

pub(super) async fn send_to_server(entries: Vec, device_id: &str, url:

&str, dir: &str) -> DbResult<()> {

 use std::fs::remove_file;

 // Entries

 for video_entry in entries {

 info!("Upload : Video Entry : {:?}", video_entry);

 let full_path = format!("{}/{}", dir, &video_entry.file_name);

 let file_name = video_entry.file_name.clone();

 // Send to the backend

 match super::send::send_to_backend_async(device_id, url,

&file_name, &full_path).await { ③
 Ok(value) => {

 if value == true {

 mark_uploaded(video_entry.file_name); ④
 // There is a chance this wasn't marked correctly

 remove_file(&full_path).unwrap() ⑤
 } else {

 increment(video_entry.file_name, video_entry.

retry_count); ⑥
 }

 },

 Err(e) => {

 warn!("Error sending the video {:?}", e);

 increment(video_entry.file_name, video_entry.retry_count); ⑦
 }

 };;

 }

 Ok(())

}

Chapter 11 IntegratIon

535

 ➀ Selects from the database all the file metadata that has not been

uploaded.

 ➁ Reads the data from the database and stores into a

Result<MappedRows> of VideoEntry structs.

 ➂ Calls the method to send the entry to the upload_svc for storage.

 ➃ Called on successful upload will mark in the database this entry is

uploaded.

 ➄ Removes the underlying video file from the Pi to conserve space.

 ➅ If the file is not uploaded successfully, it will increment our counter

in the database. This occurs if the server status was anything but 200.

 ➆ This will also increment, but this will be triggered if there are any

other errors unassociated with the status returned by upload_svc.

Currently, the counter just keeps getting incremented on failures with nothing

happening. If you were going to implement this, you may want to break the file up or

simply send an error to the server so the user is aware that a video file exists on the Pi but

is having upload issues. Without manual intervention, you will only have a few options.

Sending to the Server

Sending the file to the servers uses the same reqwest crate that we used in Chapter 3 to

receive the uploaded file. The reqwest crate does have the ability to do asynchronous

processing, but for the multipart crate, we are going to run it synchronously. The crate

will upload with the device_id as a URL parameter and the file sent. The device_id is

used to store into the database the correct file referencing the correct device so that we

later will be able to tie the right video to the right device from the backend databases. In

Listing 11-8, we have the send_to_backend.

Listing 11-8. Implementation of send_to_backend to send the file to the

backend, in src/camera/send.rs

use crate::errors::HttpResult;

use log::info;

use reqwest::blocking::{multipart, Client};

use std::fs::File;

Chapter 11 IntegratIon

536

use std::io::Read;

const PATH : &str = "api/upload"; ①

pub(super) async fn send_to_backend_async(device_id: &str, url: &str, file_

name: &String, full_path: &String) -> Result> {

 use futures_util::{future, stream};

 let name = get_filename(file_name);

 println!("full_path :: {:?}", full_path);

 println!("file_name :: {:?}", file_name);

 println!("name :: {:?}", name);

 // Get the file and send over as bytes

 let file = std::fs::read(full_path);

 // Check if we have the file, if we dont its gone for some reason

 // just delete it from the database then, in actuality you could do

 // some error state messaging instead

 match file {

 Ok(f) => {

 // need to set the mime type

 let part = reqwest::multipart::Part::bytes(f) ②
 // TODO alter although only file exension matters

 .file_name(name)

 .mime_str("video/mp4")?;

 let form = reqwest::multipart::Form::new() ③
 .part("file", part);

 let client = reqwest::Client::new();

 info!("Sending >>> {:?}", format!("{}/{}/{}", url, PATH,

device_id).as_str());

 let res = client

 .post(format!("{}/{}/{}", url, PATH, device_id).as_str()) ④
 .multipart(form)

 .send() ⑤
 .await?;

Chapter 11 IntegratIon

537

 if res.status() == 200 { ⑥
 Ok(true)

 } else {

 warn!("Status: {}", res.status());

 Ok(false)

 }

 },

 Err(e) => {

 warn!("Error Getting the File {:?}", e);

 Ok(true)

 }

 }

}

fn get_filename(filename: &String) -> String {

 if filename.contains("/") {

 let x: Vec<&str> = filename.split("/").collect();

 x.last().unwrap().to_string()

 } else {

 filename.to_string()

 }

}

 ➀ The path on the server to upload; it’s the URI we referenced in

Chapter 3.

 ➁ Start of our multipart form request.

 ➂ Attaching the absolute file to the multiple part form.

 ➃ Creating the URL with the format of api/url/<device_id>.

 ➄ Sending the multipart form synchronously.

 ➅ Returning true on a successful status.

On bullet 6, you saw that we return true or false depending on whether the file is

successfully uploaded. Whether it was successful or not depends on the next course of

action.

Chapter 11 IntegratIon

538

Marking Entry Successfully Uploaded

If a video is successfully uploaded, we will mark it uploaded in the database, so it doesn’t

get uploaded again, and we will delete the file. In Listing 11-9, we mark the file as

uploaded.

Listing 11-9. Marks the file as uploaded, in src/camera/db.rs

fn mark_uploaded(name: String) -> bool {

 let conn = create_conn(OpenFlags::SQLITE_OPEN_READ_WRITE).unwrap();

 let size_result = conn.execute(

 "UPDATE video_entry

 Set uploaded = 1

 Where name = ?1",

 params![name]

);

 // Determine the result

 match size_result {

 Ok(size) => {

 if size > 0 {

 info!("Marked {:?} as uploaded", name);

 true

 }

 else {

 false

 }

 },

 Err(_) => {

 false

 }

 }

}

In there, we just set the uploaded to 1 to mark that it has been uploaded.

Chapter 11 IntegratIon

539

Marking Entry when Not Successful

For entries that aren’t successful, in Listing 11-10, we increment the current retry_count

by one.

Listing 11-10. Increments upload attempt, in src/camera/db.rs

fn increment(name: String, current_count: i32) -> bool {

 let conn = create_conn(OpenFlags::SQLITE_OPEN_READ_WRITE).unwrap();

 let size_result = conn.execute(

 "UPDATE video_entry

 Set uploaded = 0,

 retry_count = ?1

 Where name = ?2",

 params![current_count + 1, name]

);

 // Determine the result, of course not much one can do with it

 match size_result {

 Ok(size) => {

 if size > 0 {

 true

 }

 else {

 false

 }

 },

 Err(_) => {

 false

 }

 }

}

While we are not doing anything with the code, you can add extra logic later based

on the retry_count; this could be dividing the file into smaller chunks or to even give up

trying to upload file and notify the user. The options are up to the reader.

Chapter 11 IntegratIon

540

 Sending Commands
One of the keys of any IoT application is to push commands from the server via a UI or

mobile to the device. There are a few ways this can be accomplished. Depending on

the proximity of the device to the mobile, they may use Bluetooth or Wi-Fi; this allows a

speedier uptake. However, many devices, since they are designed to work when you are

on the network and outside the network, have to go through a backend that then routes

the communication to the device. We have already set up the infrastructure in previous

chapters on both the backend and the Pi to use the MQTT.

In Chapter 4, we went over how to publish to a recording topic; that topic pushed to

the message queue a command to tell a device whether to start or stop the recording. In

addition, if you recall, the MQ application on our Pi is a separate application from our

master application which communicates with the camera. In addition to connecting

our MQ to retrieve the commands from the MQ, we will need to set up communication

between the applications; we will be using inter-process communication (IPC) to

perform it. In Figure 11-1, I have diagramed the interaction between all these parts.

Figure 11-1. Diagram of the interaction of our application

Chapter 11 IntegratIon

541

 IPC
Our applications on the Pi each have their own processes, and often we need to share data

between the two. There are a number of ways of how to do this in an operating system; IPC

is the way we are going to implement those communications for this book. Inter-process

communication is a technique by operating systems to allow communication of shared

data between processes. With IPC, each application is either a client or a server, and you

can send as many or as little communication over each of those channels. In general with

IPCs, you can have multiple clients and one server, although in the crate we are using, this

is limited to the server accepting only one client at a time.

One of the features of IPC is that the applications can communicate asynchronously

if they choose to, allowing you to not have the communication active at the time. Your

operating system depends on how the IPC channel will communicate; in addition, this

also depends on your IPC implementation. IPC can talk over sockets, file descriptors,

message queues, shared memory, memory-mapped files, or more. The precise

implementation may affect performance but won’t affect the underlying concept.

 Packet IPC

The crate we are using for our implementation is packet-ipc (https://github.com/

dbcfd/packet-ipc). Packet IPC wraps crossbean-channel and ipc-channel to create

easy-to-use code code to create our IPC channel. The use of both of these underlying

crates was my driving force into using packet IPC. The ipc-channel is a Rust native

implementation of communicating sequential processes; it is a multi-process drop in

replacement for Rust channels. This uses file descriptors for Unix and Mach ports for

Mac as its underlying implementation of the channels. (Note: There is no Windows

support right now.) Using this wrapper will make our application a bit easier to write.

 Application
Let’s dive into writing the code for this section. I have divided it up into essentially four areas:

• Receiving – Recording commands from the MQ

• MQ app – Setting up IPC server

• Main app – Setting up IPC client

• Communicating IPC client with camera module

Chapter 11 IntegratIon

https://github.com/dbcfd/packet-ipc
https://github.com/dbcfd/packet-ipc

542

Once all of these four are wired up, we will be able to control the cameras recording

from the backend servers. In order to use the IPC channel, we will add the crate

definition in both our applications. In Listing 11-11, we have the import defined.

Listing 11-11. Defining the crate to use, in Cargo.toml file

packet-ipc = "0.9.0"

 Subscribing to the Message Queue

Much of the code we wrote to subscribe to publish on the MQ is the same set of code

we wrote for our microservices. The code that is the same we won’t duplicate here,

but the newer code we will write. We’ve added the publishing code when we wrote the

heartbeat, but not the subscribing code. For the monitor_notifications and subscribe

function we wrote in Chapter 4, we can cut and paste them into our necessary modules.

What’s left is to create a recording module that subscribes to the topic and allows us

to retrieve the recording and then send it to the IPC server. In Listing 11-12, we will copy

and paste to reuse the struct we decomposed from.

Listing 11-12. Defining the struct for our Recording, in src/actions/recording.rs file

#[derive(Serialize, Deserialize, Debug)]

pub enum RecordingType {

 Start,

 Stop

}

#[derive(Serialize, Deserialize, Debug)]

struct Recording {

 uuid: Uuid,

 rtype: RecordingType

}

In here, we will have a recording type, which tells the device whether to start or stop

the application. In Listing 11-13, we will subscribe to the topic recording/<uuid>; the

UUID is the device id. This is the differentiator that allows the device to ONLY receive

communication for that particular device and not every device there is. The JSON is

brought back decoded, and the Start/Stop recording type is sent to the IPC.

Chapter 11 IntegratIon

543

While we are not going to do it here, in a real application, you should apply quite a

bit more authentication at the cert level that makes sure that ONLY that cert can access

that device id. This is because you don’t want a user to pop the Pi and then use the certs

to subscribe to every recording command there is. That could be quite the privacy issue.

Listing 11-13. Defining the subscription to the recording, in src/actions/

recording.rs file

const MOD_NAME: &str = "recording";

pub fn monitor(config: &MqttClientConfig, device_id: &Uuid) {

 let (mut mqtt_client, notifications) = create_client(&config, MOD_

NAME).unwrap(); ①
 info!("Subscribe to recording monitor ...");

 let topic = format!("recording/{:?}", device_id); ②
 subscribe(&mut mqtt_client, topic.as_str(), QoS::AtMostOnce); ③
 debug!("Monitor the notifications ... ");

 monitor_notifications(notifications, process); ④
}

/**

 * Submit the recording to the other application

 */

pub fn process(topic: String, pl: Vec<u8>) { ⑤
 use serde_json::{Value};

 info!("Process Recording :: {}", topic);

 let pl = String::from_utf8(pl); ⑥
 match pl {

 Ok(payload) => {

 let mut recording: Recording = serde_json::from_str(payload.

as_str()).unwrap(); ⑦
 crate::ipc::send(recording.rtype) ⑧
 },

 Err(error) => {

 error!("Error sending the payload: {:?}", error)

 },

 };

}

Chapter 11 IntegratIon

544

 ➀ The instantiation of the client with the unique module name.

 ➁ The topic name to subscribe to which is recording plus the device id.

 ➂ Subscribing to the topic.

 ➃ Using the return of the notifications to monitor and pass to the

process function to handle the notifications response.

 ➄ The function that will be called when a message is sent to the topic.

 ➅ Decomposing the messages into a string.

 ➆ Translating the string into our Recording struct.

 ➇ Calling the yet-to-be-built ipc handler sending in just the command

to Start or Stop.

You will notice that we are handling JSON here instead of Protobuf; the reason for

this is we only converted the heartbeat code to Protobuffers and not the recording. But

as you can see, copying the message is cleaner than copying the struct. Realize here

that we are only dealing with two commands; if we wanted to expand or have an entire

command module, we could have placed that here.

We are decomposing the string here; as you will see in a bit, we send a string

over on the IPC, and thus if the command was a more complex JSON, we could have

decomposed the message on the client side of the IPC.

 IPC Server Side

The IPC server creates a server but cannot send any data till a client connects to it. We

will have on the MQ side set up the server and then send our data as a packet. When the

client creates a server connection, it creates a unique file descriptor; this file descriptor

is what the client needs to know in order to retrieve the packet. This allows us to have

multiple client/server architecture on the same system (even though we are using just

one). In order to determine this architecture, we will write the file location to a file

descriptor that our client can then retrieve later and use to subscribe to the client.

In Listing 11-14, we create our server connection, convert the string to byte array,

and send the packet on the server, awaiting the client to connect and retrieve it.

Chapter 11 IntegratIon

545

Listing 11-14. Defining the IPC server, in src/ipc.rs file

const file_location: &str = "/tmp/pi_upc_server_name_file"; ①

pub fn send(recording: RecordingType) {
 // lock server and use

 let mut server_tx = init().expect("Failed to accept connection"); ②

 let payload = format!("{:?}", recording); ③
 let x = payload.as_bytes();

 server_tx

 .send(&vec![Packet::new(std::time::SystemTime::now(), x.to_vec())]) ④
 .expect("Failed to send");

}

/**

 * Initialize the server connection to be used.

 */

pub fn init<'a>() -> Result<ConnectedIpc<'a>, Error> {
 // Start up the server

 let server = Server::new().expect("Failed to create server"); ⑤
 let server_name = server.name().clone();
 file::write(file_location.to_string(), &server_name);

 info!("Server Name :: {:?}", server_name);

 return server.accept()

}

 ➀ Define the location of the file that has our file descriptor.

 ➁ Create the connection to the server.

 ➂ Convert the string to array bytes to be used for the payload.

 ➃ Send the packet from the server, setting the timestamp to the current

time.

 ➄ Create a new server connection.

In bullet 4 where we send the packets, we could send multiple packets here. This can

work well in a scenario where you are stacking commands to be sent to the client or need

to parse into individual strings to send. Now that we have the Pi MQ working, we will

turn our attention to the client side.

Chapter 11 IntegratIon

546

 Client Side

On the client side, we are going to need to update the video module in order to monitor

the ipc channel to know how to update the recording. Let’s go over what we need to do

and how to make this work. We already have created the code to do a continuous loop

over the video. This video records and saves the file. Here are the steps then to integrate

the concept of starting and stopping the video:

 1. Create a variable that tells whether we are recording.

 2. Create another variable that tells whether we should be recording

(i.e., a message from the IPC saying to stop recording).

 3. Spawn a loop to monitor that IPC client.

 4. Act on the recording variables in the loop.

The dual variables will become apparent later, but using them allows us to infinitely

write out the video to file in case of a stop command, since if we didn’t, the video may get

lost due to a reboot or may never get uploaded.

Let’s start with the public-facing function we created in the previous chapter,

run_face_detect. Right before we start our video loop that we made, we will create

two variables. The first will be wrapped in an Arc<Mutex<String>. This will allow us

to create a thread-safe wrapper around a string. Now we are going to need to have

multiple threads access it, and in addition, we will need to update that outside of the

main recording loop. In order to do so, we will clone the Arc<Mutex<String>>; cloning it

allows us to preserve a reference to the underlying String but cloning the Arc wrapper. In

Listing 11-15, we have an excerpt from the run_face_detect.

Listing 11-15. Update to run_fac_detect for our video monitoring, in src/

camera/video.rs file

 let recording_execute: Arc<Mutex<String>> = Arc::new(Mutex::new

(START.to_string())); ①
 let recording_monitor = recording_execute.clone(); ②

 monitor_controls(recording_monitor); ③

 match handle_video(face, show_window, ④
 writer, frames_per_file, last_face_detect_time,

Chapter 11 IntegratIon

547

 face_tx, size, window, fps,

 cam, &recording_execute) {

 // Only returns if there is an error

 Ok(_) => {},

 Err(e) => {

 error!("Error handling the video :: {:?}", e);

 }

 };

 ➀ Create the Arc<Mutex<String> wrapper around the string variable

defaulting to starting the video recording.

 ➁ Clone that variable, which we can use when we want to monitor the

IPC server and update with.

 ➂ Call out to a function that will create the IPC client to connect to the server.

 ➃ The function that handles the recording passing a reference to the

recording_execute that we can use to test if we’ve recorded.

Now we just need to code the monitor_controls and update a section in handle_

video that checks if it’s recorded.

IPC Client

Let’s start with coding the IPC client. The client will spawn a thread that will

continuously attempt to connect to the server and receive the packets from the server.

If a packet is retrieved, we set the contents of the package to the recording_monitor

variable we just discussed. Oftentimes, we won’t have anything to connect to, so the

client connection will fail; this is a normal thing to happen, and we will let the error fall

out gracefully. Since we want this to happen in virtual real time, we will be checking the

thread every second; we could increase this based on performance, and in reality, we

could put the length even longer and just trim the video on the Pi before storing.

Connecting to the client and receiving packets is a two-step process:

 1. We connect our client to the server and receive the packets from

it, pushing each packet onto a stack and then returning that stack.

 2. We join all the packets together to have a vector of results and

then process the packets.

Chapter 11 IntegratIon

548

The first part deals with the client connection and retrieval, and the second deals

with performing actions on the packets. For us, the actions are simply returning the

value stored since we are only expecting and allowing one packet per one message from

the MQ. We mentioned that the server can send multiple packets; thus, in the client

code, we could expect to receive multiple packets at a time and push all those packets to

the awaiting asynchronous processor. In Listing 11-16, we define the monitor_controls

function as well as connect and process the packets.

Listing 11-16. Defining the IPC client, in src/camera/video.rs file

fn monitor_controls(recording_monitor: Arc<Mutex<String>>) {

 use std::{str,fs};

 use packet_ipc::{AsIpcPacket, Client, Error, IpcPacket, Packet, Server};

 use std::{thread, time};

 let one_second = time::Duration::from_secs(1);

 thread::spawn(move || { ①
 loop {

 thread::sleep(one_second); ②

 let server_name = fs::read_to_string(file_location.to_

string()).unwrap(); ③

 let client_res = Client::new(server_name.clone()).map(|mut cli| { ④
 let mut packets = vec![];

 // Pushes a packet

 // This contains the information received from the client

 let val = cli.recv(1); ⑤
 info!("Push a packet! :: {:?}", val);

 // can keep receiving till you get No packets back

 packets.push(val); ⑥
 packets

 });

 match client_res {

 Ok(res) => {

 info!("Await ...");

Chapter 11 IntegratIon

549

 let res: Result<Vec<_>, Error> = res.into_iter().collect(); ⑦
 let res = res.expect("Failed to get packets");

 let packets = res[0].as_ref().expect("No message"); ⑧
 let data = packets[0].data();

 info!(">> {:?}", str::from_utf8(data).unwrap());

 let value = str::from_utf8(data).unwrap();

 let mut guard = recording_monitor.lock().unwrap(); ⑨
 *guard = value.to_string(); ➉
 },

 Err(e) => {}

 }

 }

 });

}

 ➀ Spawns a continuous thread to loop creating a client to connect to a

server to check if there have been any packets pushed.

 ➁ Sleeps the thread for one second so that we are not trying to kill the

process.

 ➂ Retrieves the server file descriptor to know what to connect to.

 ➃ Creates the client connection based on the server file descriptor

name.

 ➄ Receives the packet from the client that is connected.

 ➅ Uses the value from the received connection and pushes the

returning string on to our packet.

 ➆ Iterates over the packets that are received by the client.

 ➇ Retrieves the first packet and will be subsequently the only packet we

have.

 ➈ On the Arc<Mutex<String>> will lock the value so we can write to it.

 ➉ Writes the value from the packet to the dereferenced location.

Chapter 11 IntegratIon

550

Writing the packet to the dereferenced location will then allow the recording_

execute the ability to retrieve that value and process. This thread will run continuously

and only update the command to start or stop when a new value is received.

Integrating on the Video Loop

Finally, we will integrate the use of the recording_execute into the video loop to

determine when to start and stop recording. There are a few different scenarios we need

to code against. While this loop is running, you have the current state on whether we are

recording and then you have a state on whether we should be recording, and we need to

reconcile these two situations in multiple scenarios; these scenarios are these:

 1. Application is currently recording and application should be

recording. This is a normal recording state; don’t change anything

from what we coded before. In here, you should only check if the

frames_per_file has been reached and if it has started a new

recording. If not, continue.

 2. Application is currently recording and application should NOT

be recording. In this situation, you need to stop the loop from

recording, and release the file so it writes the file out to the Pi.

 3. Application is NOT recording and the application should be

recording. In this case, start the recording and set the recording

state to true.

In Listing 11-17, we implement these rules wrapping around the existing video write

code.

Listing 11-17. Updating the record function with the recording_exercise

variable, in src/camera/video.rs file

fn is_record(command: &Arc>) -> bool{

 let c = &*command.lock().unwrap();

 let cmd = c.as_str();

 match cmd {

 START => true,

 STOP => false,

Chapter 11 IntegratIon

551

 _ => false

 }

}

fn dont_record(command: &Arc<Mutex<String>>) -> bool {

 let c = &*command.lock().unwrap();

 let cmd = c.as_str();

 match cmd {

 START => false,

 STOP => true,

 _ => true

 }

}

fn record(writer: &mut VideoWriter, frames_per_file: f64, size: core::Size,

fps: f64,

 recording_execute: &Arc<Mutex<String>>, i: &mut f64, start_time:

&mut DateTime<Utc>,

 is_recording: &mut bool, mut frame: &mut Mat, file_name: &mut

String) -> opencv::Result<()> {

 // Currently recording, and no stop command

 if *is_recording

 && is_record(&recording_execute) { ①
 // Release and restart the file

 // Write it locally with the file

 writer.write(frame)?;

 if *i == frames_per_file {

 info!("Created File : from {:?} to {:?}", start_time, Utc::now());

 writer.release()?;

 *file_name = create_file_name();

 *writer = videoio::VideoWriter::new(&file_name.as_str(),

fourcc(), fps, size, true)?;

 db::add(&file_name, *start_time, Utc::now());

 *start_time = Utc::now();

 *i = 1f64;

 }

Chapter 11 IntegratIon

552

 else {

 *i = 1f64 + *i;

 }

 }

 // is recording but received a stop command

 // so set the is_recording to false and write a release file

 else if *is_recording

 && dont_record(&recording_execute) { ②
 // Stop the recording and save to the file

 *is_recording = false;

 writer.release()?;

 db::add(&file_name, *start_time, Utc::now());

 }

 // not currently recording, but needs to start again

 else if !*is_recording

 && is_record(&recording_execute) { ③
 *is_recording = true;

 *start_time = Utc::now();

 *file_name = create_file_name();

 *writer = videoio::VideoWriter::new(&file_name.as_str(), fourcc(),

fps, size, true)?;

 *i = 1f64;

 }

 else {

 warn!("Not supported.");

 }

 Ok(())

}

 ➀ Handles the first use case of application recording and should be

recording.

 ➁ Second use case of application is recording and should not be

recording.

 ➂ Third use case of application is not recording but should be.

Chapter 11 IntegratIon

553

Now at this point, the backend servers can communicate with our Pi and start and

stop the camera recording.

 HomeKit
If you aren’t familiar with HomeKit, it’s probably because you don’t have an iPhone.

HomeKit is Apple’s software to connect smart home appliances. HomeKit was started

as an impressive and ambitious project to connect devices all in a secure way. When

the project was first released, any hardware device would require an encryption co-

processor in order for it to connect and be used. This guaranteed secure communication

between devices and allowed for greater privacy. We obviously don’t have an encryption

co-processor, but in iOS 11, this was changed to allow for so encrypted software

authentication instead. Homekit works by connecting between devices and a hub via

Bluetooth or Wi-Fi. The hub is what consolidates all the information about the devices

and allows you to not only control them but create scenarios to activate or deactivate

them all via timers, rules, and so on.

What makes the Apple HomeKit unique compared to its competitors, Google and

Amazon, is the hub to device interaction. While other systems have a hub, they often

serve as a passthrough back to backend servers. All your data and recordings then get

sent to those servers, and all your actions are recorded; thus, other providers are able

to track you. This is also why they can build and learn your interactions, when your

comings and goings are, and so on much easier. With HomeKit, it’s an entirely secure

world. For the privacy minded, this is appealing in that it still gives you solid good UI and

ecosystem, without giving up your security.

Generally, to create a fully stable commercially sellable system, you will have to go

through more Apple hoops. However, they do allow for testing and individual use of their

own set of tools. And we will make use of this to add HomeKit to our Raspberry Pi.

As we touched on earlier, we will be using HomeKit to add temperature and motion

sensor readings. The temperature comes from our Pi, the same temperature that we

display on the LED screen. The motion sensor is a bit trickier. While we could have

added some code to determine changes in the frames from frame to frame or even from

frame to the fifth frame, we are going to use the motion sensor indicator to indicate when

there is face detection. This provides an interesting use case, but also allows us an easier

intercept in code that is already written.

Chapter 11 IntegratIon

554

 HomeKit Accessory Protocol (hap-rs)
The hap-rs is mostly a pure rust-built project that is used to communicate Rust code

with a HomeKit device over Wi-Fi (via IP). The Bluetooth protocol is not supported

currently. I say mostly a pure Rust application because while the crate is written in Rust,

it does use ring as a dependency to perform all the encryption/decryption necessary to

communicate between the code and the HomeKit hub. And ring uses a hybrid of Rust,

C, and assembly language under the covers. The current version of the crate (https://

github.com/ewilken/hap-rs) does use ring 14.x; I have since forked the repo and

updated the code to ring 16.x so we can use the code inside our existing Pi application.

We can use the dependency via Listing 11-18.

Listing 11-18. Defining the hap-rs, in Cargo.toml file

hap = "0.0.10"

The code uses a combination of custom code and auto-generated code. Much of the

custom code is for the configuration and communication, while the auto-generated code

deals with defining the accessories and characteristics for them. In the hap-rs code base,

there are currently 31 accessories that are supported via that code generation. All but

four of them are fully supported with their full characteristics. The accessories that are

defined but not currently supported are these:

• IP camera

• Light sensor

• Thermostat

• Video doorbell

The main reason these aren’t fully supported is because their implementation

would require more than auto-generated code can provide. If you are curious, there is

an issue to track this at https://github.com/ewilken/hap-rs/issues/11, or you can

even submit your own patches to it. You will notice IP camera is one, which is why we are

using a motion sensor as a device instead of IP camera for our Pi interaction.

Chapter 11 IntegratIon

https://github.com/ewilken/hap-rs
https://github.com/ewilken/hap-rs
https://github.com/ewilken/hap-rs/issues/11

555

 Accessories

I’ve mentioned accessories a few times here; it’s good for us to talk about how HAP

works and the interface points we have to communicate with it. In the documentation,

each accessory is composed of multiple services which in turn are composed of multiple

characteristics. This can get a bit confusing, in that what we call an accessory in abstract

is manually defined in the code, and what we call a service here is called an accessory

in the code. Let’s take a look at an example of a thermostat like the Ecobee. The Ecobee

thermostat is composed of two accessories: a thermostat and a motion accessory, each

of which will show up as a separate device on the Homekit. Each of these accessories

will be composed of multiple characteristics themselves. These characteristics are

used for display and control of the device. In Table 11-2, we have the characteristics for

thermostat.

All of these units will be accessible; in addition, the characteristics of motion sensors

are in Table 11-3.

Table 11-2. Characteristics for a thermostat

name

current_temperature

cooling_threshold_temperature

current_relative_humidity

heating_threshold_temperature

target_heating_cooling_state

target_relative_humidity

target_temperature

temperature_display_units

Chapter 11 IntegratIon

556

These characteristics each interact with the HomeKit application and are the rust

crates’ way of interacting with the application. Each one can have two methods defined:

an on_read and an on_update. The on_read is used whenever the Homekit needs to read

the current state from the code. An example would be the temperature; when it needs

to read the temperature, the on_read on the Homekit will access the method and return

the value. The on_update is used whenever the Homekit needs to send a value to the rust

code. For example, on a thermostat, you want to set the temperature; the temperature

you set from the Homekit will be sent to the rust code. The use of these in conjunction

allows us to create a complete loop of interactions with the rust code and the Homekit.

 Creating Our HomeKit
For our Homekit Pi device, we are going to implement the motion sensor and

temperature sensor in a new homekit module. In order to create the homekit integration,

in Listing 11-19, we will need to define each of the accessories and then a configuration

file to define the Pi.

Listing 11-19. Defining the Pi configuration, in src/homekit.rs file

 let config = Config { ①
 name: "Rasp Pi".into(),

 category: Category::Thermostat,

 ..Default::default()

 };

Table 11-3. Characteristics for a motion sensor

name

motion_detected

status_active

status_fault

status_low_battery

status_tampered

Chapter 11 IntegratIon

557

 debug!("What's the pin :: {:?}", config.pin);

 // Adds our transport layer to start

 let mut ip_transport = IpTransport::new(config).unwrap(); ②
 ip_transport.add_accessory(thermo).unwrap(); ③
 ip_transport.add_accessory(motion).unwrap(); ④

 // Spawn the start of the homekit monitor

 tokio::spawn(async move {

 debug!("IP Transport started");

 ip_transport.start().unwrap(); ⑤
 });

 ➀ Create the overall config defining the name that the device will show

up when adding on Homekit.

 ➁ Create an IP transport layer with that configuration.

 ➂ Add the thermostat accessory.

 ➃ Add the motion accessory.

We will define those two accessories in a bit, but the first part of the config is

interesting; there is also a field for the pin that is used when connecting to the device.

When not set, the default is 11122333. We haven’t set it here because it doesn’t work (it’s

mentioned briefly at https://github.com/ewilken/hap-rs/issues/15). So just use the

default for now.

 Implement Generic Temperature Sensor

We haven’t normally done this throughout the book; normally, we jump into the code

for the section, but this time we are going to break it up a bit due to the complexity of the

moving parts. Let’s take a look how a temperature sensor functionality works. All of your

available accessories will be in hap::accessory.

We can start in Listing 11-20 by instantiating a temperature sensor struct from that

accessory.

Chapter 11 IntegratIon

https://github.com/ewilken/hap-rs/issues/15

558

Listing 11-20. Defines the temperature sensor

 let mut thermo = temperature_sensor::new(Information {

 name: "Thermostat".into(),

 ..Default::default()

 }).unwrap();

This creates the thermostat sensor, and with the code in the previous listing, it gets

wired up to show in the Homekit. But that’s all; there are no values being set or transmitted.

In order to interact with the Homekit, you will need to implement one of two traits:

• hap::characteristic::Readable – For any events that are read from

Homekit

• hap::characteristic::Updatable – For any events that are updated

by Homekit

In Listing 11-21, we are going to create a struct that holds the temperature reading

and allows it to be set and updated by the two traits we mentioned.

Listing 11-21. Defines the temperature structure

#[derive(Clone)]

pub struct Temperature {

 temp: f32, ①
}

impl Readable<f32> for Temperature { ②
 fn on_read(&mut self, _: HapType) -> Option<f32> { ③
 println!("On read temp.");

 Some(self.temp)

 }

}

impl Updatable<f32> for Temperature { ④
 fn on_update(&mut self, old_val: &f32, new_val: &f32, _: HapType) { ⑤
 println!("On updated temp from {} to {}.", old_val, new_val);

 if new_val != old_val { self.temp = *new_val; } ⑥
 }

}

Chapter 11 IntegratIon

559

 ➀ Sets a struct to hold a temperature value as float 32.

 ➁ Implements the Readable trait using f32 type value.

 ➂ Implements the one function that reads the temperature and reads

the structs value.

 ➃ Implements the Updatable trait using f32 type value.

 ➄ Implements the one function that reads the temperature and updates

the structs value.

 ➅ The function only updates the value if it’s been altered and changes

the self.temp to the new value.

The one thing of note is the f32; why f32? This is all dependent on the type of

object we are going to apply the trait to. Temperatures are used for f32; if this had been

a motion sensor, we would have used a boolean. The final step is to wire this up with the

configuration we initially created. In Listing 11-22, we wire up the application.

Listing 11-22. Integrates our temperature struct with the homekit

let thermometer = Temperature { temp : 22.2 };

// there is also a status_active

 thermo.inner.temperature_sensor.inner.current_temperature.set_

readable(thermometer.clone()).unwrap();

 thermo.inner.temperature_sensor.inner.current_temperature.set_

updatable(thermometer.clone()).unwrap();

We instantiate the struct with a default value. The set_readable and set_updatable

each take as a parameter a struct that implements the Readable and Updatable trait,

respectively, which in our case, the Temperature struct we created satisfies both.

With this, we would have a temperature gauge that updates and displays a default

value. If you look deeper into this code, there is one question you may be asking yourself:

how are we going to set it? The motion detection is based off the face detection in our

video code, and the temperature is based off of the atmospheric sensor that we apply

to our manager module. In order to accomplish that, we are going to make use of more

tokio channels to create interactions with, so that basically we can create sending and

receiving commands.

Chapter 11 IntegratIon

560

 Implementing Temperature Sensor

Let’s start with the temperature accessory and implement that code first. In order to

make the accessory work, we are going to in the on_read call out to the manager to

request it find the data for us. For this, we are going to make use of the existing channels

and add an additional command. But we are also going to create a new set of channels

that will allow the manager to broadcast data back to the homekit (when it’s been

requested). I’ve diagramed this interaction in Figure 11-2.

We will send to the manager its own transmitter specifically for the temperature and

send its corresponding receiver to the homekit so those two channels can communicate.

Since this is a one-off communication channel, we don’t need anything as heavy as

the mpsc; instead, we will use a different channel, the toko::sync::watch; this single-

producer, multi-consumer channel only retains the last value sent, which is fine for us

since we only care about the most recent temperature reading. In your main.rs, you will

add to the run function the code in Listing 11-23.

Listing 11-23. New channel with a default value of 25, in file src/main.rs

let (temp_tx, mut temp_rx) = watch::channel(25f32);

iOS Temperature

temp_rx.await

Manager

on_read

tx(Action::SendTemperature

temp_tx.broadcast

Atmospheric

get_temperature_in_c

Return Temp

Display Temperature

Figure 11-2. Diagram of the interaction of the homekit with the atmospheric
temperature

Chapter 11 IntegratIon

561

You will then need to pass the temp_rx to the homekit module and the temp_tx to

the manager module. Inside of homekit, we won’t need the on_update, since updates

do not get driven from the homekit device; instead, we will just need an on_read, and

in addition, the struct will not retain any value state of the temperature since we do not

need to receive that information. What the struct will need to maintain is the rx and tx

values that allow the cross communication. In Listing 11-24, we create the struct and our

on_read call.

Listing 11-24. The Temperature struct and the Readable implementation, in file

src/homekit.rs

pub struct Temperature {

 rx: TempRx,

 tx: Tx,

}

impl Temperature {

 fn new(mut tx: Tx, rx: TempRx) -> Temperature {

 Temperature { ①
 tx,

 rx

 }

 }

}

impl Readable<f32> for Temperature {

 fn on_read(&mut self, _: HapType) -> Option<f32> {

 debug!("On read temp.");

 //let value = get_temperature(self.tx, &mut self.rx);

 let val : f32 = get_temperature(&mut self.tx, &mut self.rx); ②

 Some(val)

 }

}

Chapter 11 IntegratIon

562

#[tokio::main]

async fn get_temperature(tx: &mut Tx, rx: &mut TempRx) -> f32 {

 send(tx, Action::SendTemperature).await; ③

 let val = rx.recv().await; ④
 val.unwrap()

}

 ➀ Instantiate the struct with the sender and receiver.

 ➁ Call out to our method to receive the temperature.

 ➂ Send to the manager our request of sending the temperature.

 ➃ Receive the value back, unwrapping and returning.

The send is the same send we used in previous sections which sends an action

command. This allows us to have cross-thread communication without violating any

borrowing rules and thus preserving thread and memory safety. In addition, we will

need to insatiate the struct in our initialize in Listing 11-25.

Listing 11-25. Instantiating the temperature struct, in file src/homekit.rs

let thermometer = Temperature::new(temp_cmd_tx, temp_rx);

 thermo.inner.temperature_sensor.inner.current_temperature.set_

readable(thermometer).unwrap();

Recall in a previous listing, we had already used thermo to add the accessory. The

last thing to finish would be to implement the manager. This will require two updates,

one creating the send_temperature method in Listing 11-26.

Listing 11-26. Creation of send_temperature function, in file src/homekit.rs

fn send_temperature(atmospheric: &Arc<Mutex<Atmospheric>>, temp_tx:
&TempTx) {

 let mut atmo = atmospheric.lock().unwrap();
 let temp = atmo.get_temperature_in_c();
 temp_tx.broadcast(temp);

}

And now in our matcher we created before, create a catch for the SendTemperature

action calling the function we just created in Listing 11-27.

Chapter 11 IntegratIon

563

Listing 11-27. Creation of send_temperature function, in file src/homekit.rs

Action::SendTemperature => {

 send_temperature(&atmospheric, &temp_tx)

},

With this, your homekit will be able to get the temperature from the Pi and return it

to the homekit app on your iOS device.

 Implementing Motion Sensor

Let’s move on to the motion sensor; the motion sensor will detect any face motion that

the camera picks up. So when it detects motion, it is because you are looking at the

camera, and when it doesn’t, you aren’t. This code will look much like the temperature

code, and as you can see in Figure 11-3, it has the same basic skeleton for the call.

iOS Motion

temp_rx.await

Manager

on_read

tx(Action::SendMotion

temp_tx.broadcast

Display Temperature

Figure 11-3. Diagram of the interaction of the homekit with motion detection

Chapter 11 IntegratIon

564

The bigger difference comes in the manager itself. The manager does not have access

to other modules that it can query if there is face detection. Instead, face detection is

handled in the video loop. To solve this in the video loop, we will add another channel

that allows communication from the sensor back to the manager to tell the manager if a

face is currently detected. In Figure 11-4, we have this loop displayed.

This will require us in the main to define two more channels:

 1. For notifying the manager a face is detected

 2. For homekit to request knowing if a face is detected

In Listing 11-28, we add these two channels.

Listing 11-28. Adding two additional channels to communicate face and

motion, in file src/homekit.rs

let motion_cmd_tx: Tx = tx.clone();

// basically like a watcher but we needed features that watcher didn’t provide

// Single producer/ consumer for this setup

let (face_tx, face_rx) = mpsc::channel(1);

// Face detector, for single producer single consumer

// One shot cannot be used in loops it’s designed for one shot

// let (motion_tx, motion_rx) = oneshot::channel::<bool>();

let (motion_tx, motion_rx) = watch::channel(false);

Video Motion

face_rx.recv()

face_tx.send(bool)

Update
Motion
Variable

Figure 11-4. Diagram of the signalling of a face detection

Chapter 11 IntegratIon

565

You will notice we do use the mpsc::channel for the face detection; this had to do

with certain traits that were needed for it to work that weren’t in the watch::channel;

we did keep it as only a channel with a count of one since we only care about the most

recent request. With this, we will also pass the variables to the these:

• face_tx – Face sender to the video module so we can send face

detection updates.

• face_rx – Face receiver to the manager module to receive face

detection status from the video.

• motion_tx – Motion transmitter to the manager to send back to

homekit the motion status.

• motion_rx – Motion receiver to the homekit module to receive

motion information from the manager.

Video Module

Starting with the video module, we will on every loop send an asynchronous request

back to the manager on whether a face is detected. In Listing 11-29, we have a partial of

the handle_video function.

Listing 11-29. Adding two additional channels to communicate face and

motion, in file src/camera/video.rs

face.detect_multi_scale(

...

 // If any faces are detected send the face detection here

 if faces.len() == 0 { ①
 send(&mut face_tx, false);

 } else {

 send(&mut face_tx, true);

 }

 ➀ If we do not detect faces, send false, and if we do, send true.

Chapter 11 IntegratIon

566

Manager Module

This code will feed directly into the manager module, but not within the same loop as our

action. We will instead take a page out of how we used the command object by setting a

variable to be used in two loops. Before we run our normal manager receiver, we will in the

run function span a thread that waits for the face sender and updates the motion variable

accordingly. In Listing 11-30, we have that set of code that will go at the top of run.

Listing 11-30. In the manager checking for movement, in file src/manager.rs

let motion = Arc::new(Mutex::new(false)); ①
let motion_set = motion.clone();

// Receives the motion

// Spawn a task to manage the counter

tokio::spawn(async move {

 while let Some(movement) = face_rx.recv().await {

 let mut m = motion_set.lock().unwrap(); ②
 *m = movement;

 }

});

 ➀ Sets the two variables: one to be used by the face receiver and the

other for motion detection.

 ➁ Sets the motion variable to know if a face is detected or not.

Now that we have the motion detected, let’s go ahead while we are in the manager

module and add the code similar to SendTemperature to return the motion detection. I

won’t go into much detail since we already covered it previously with the temperature. In

Listing 11-31, we have the motion action as well as the send_motion function.

Listing 11-31. In the manager receiving the motion request and sending it, in file

src/manager.rs

 Action::SendMotion => {

 send_motion(&motion, &motion_tx);

 }

...

Chapter 11 IntegratIon

567

fn send_motion(motion: &Arc<Mutex<bool>>, mut tx: &MotionTx) {

 let m = motion.lock().unwrap();

 tx.broadcast(*m);

}

Homekit Module

Now onto the final piece is the homekit module update. In here, we will have to

implement the Readable trait for our struct and receive the motion detection back. This

code is virtually identical to the temperature one except for slightly different names, and

we are using a boolean instead a float 32. In Listing 11-32, we have the motion code.

Listing 11-32. The implementation of motion for the homekit, in file src/

homekit.rs

pub struct Motion {

 rx: MotionRx,

 tx: Tx,

}

impl Motion {

 fn new(mut tx: Tx, rx: MotionRx) -> Motion {

 Motion {

 rx,

 tx

 }

 }

}

impl Readable<bool> for Motion {

 fn on_read(&mut self, _: HapType) -> Option<bool> {

 debug!("On read motion.");

 //let value = get_temperature(self.tx, &mut self.rx);

 let val : bool = get_motion(&mut self.tx, &mut self.rx);

 Some(val)

 }

}

Chapter 11 IntegratIon

568

#[tokio::main]

async fn get_motion(tx: &mut Tx, rx: &mut MotionRx) -> bool {

 send(tx, Action::SendMotion).await;

 let val = rx.recv().await;

 val.unwrap()

}

fn initialize(...) {

 ...

 let mut motion = motion_sensor::new(Information {

 name: "Motion".into(),

 ..Default::default()

 }).unwrap();

 let motion_detect = Motion::new(motion_cmd_tx, motion_rx);

 motion.inner.motion_sensor.inner.motion_detected.set_readable(motion_

detect).unwrap();

 ...

}

That includes the motion code and the instantiation for the motion. At this point, we

have all the code and pieces together to create our homekit environment; next up is to

connect it to our homekit.

 Adding to Homekit
Finally, let’s incorporate this with Homekit; I will step you through some screenshots on

how to do it. To start with, either start up your app locally or deploy to the Pi and start up

from there.

Open homekit up, and on the top right-hand side, click the “+” button; you will

receive options to “Add Accessory” or “Add Scene” like in Figure 11-5.

Chapter 11 IntegratIon

569

Figure 11-5. Screenshot of the screen with add accessory

Click “Add Accessory”; this will take you to a screen giving you multiple options. In

our case, since this is a custom non-certified device, we don’t have a code to scan; click

“I Don’t Have a Code or Cannot Scan” like in Figure 11-6.

Chapter 11 IntegratIon

570

Figure 11-6. Screenshot to add your accessory

Here you will display multiple options that are being broadcast from the local

network. Make sure your iOS device is on the same network as the Pi, and it should show

up. In Figure 11-7, you will see the “Rasp Pi”.

Chapter 11 IntegratIon

571

You will notice it has a thermostat symbol; this is decided by the category we choose

in the config. Once you click it, you will get a warning that it is an “Uncertified Accessory”,

which is because it is a homegrown application.

Once added, you will see a message saying the Pi is being added in Figure 11-8; this

is when the communication between our Pi and the Homekit starts to go up (if you run

the app in debug mode, you will see messages for this).

Figure 11-7. Available devices to add

Chapter 11 IntegratIon

572

Once accepted, you will get two screens that prompt adding the sensors and to what

room you want to add the sensors. In Figure 11-9, we are adding the thermostat sensor.

Figure 11-8. Adding Rasp Pi display message

Chapter 11 IntegratIon

573

And in Figure 11-10, we are adding the motion sensor.

Figure 11-9. Adding Rasp Pi thermostat sensor

Chapter 11 IntegratIon

574

Finally, the sensors will now show up in Figure 11-11 showing the rest of your homekit

application; this will now be interactive and talking to your Pi whenever returning.

Figure 11-10. Adding Rasp Pi motion sensor

Chapter 11 IntegratIon

575

One note, at the time of this writing, some users have noticed on disconnect (i.e., the

device is restarted) the communication between the homekit and the Pi will cease and

you have to re-add it. This is a known bug that is being looked at; however, this project

is a side project for the user, so I am sure they’d appreciate any help. While I wouldn’t

necessarily consider this production ready, for hobbyists, it works well enough and helps

you extend the functionality of your Pi.

Figure 11-11. Our Rasp Pi sensors added the homekit application

Chapter 11 IntegratIon

576

 Summary
In this chapter, we mostly integrated the components we have created in the previous

chapters with our cloud backend, both synchronously by sending files to an http

endpoint in the upload_svc and asynchronously by processing commands for the Pi

via our message queue. Using the MQ allows us to receive those commands even if the

Pi is offline at the time. Finally, we provided a mechanism outside of the Pi to view our

sensors for our Raspberry Pi via Homekit.

Chapter 11 IntegratIon

577
© Joseph Faisal Nusairat 2020
J. F. Nusairat, Rust for the IoT, https://doi.org/10.1007/978-1-4842-5860-6_12

CHAPTER 12

Final Thoughts
We have touched on many topics in this book that have ranged the gauntlet in creating a

full cycle IoT application in Rust. This application uses many crates, which are in various

phases that I can’t control and may not be compatible with future versions of Rust. My

main goal for this book was to help put together a path to creating an IoT application and

showing you how to make all the crates needed work together, since often I’ve found that

the biggest challenge when creating a larger application is to get everything to play well

together. Even our small application with a scope of video and a SenseHat still required

quite a bit of work in the front and back to make it work. As we are at the end, I wanted to

touch on one final topic. In Chapter 7, we covered deploying the application; I wanted to

end with discussing how to deploy the binary.

If you are working on this for your own side project and your own Pis, you can simply

deploy the application as we have been doing. For the most part, we are using a base

software; we are not relying on any custom UI interfaces that have to be installed and

configured. There are of course some extra libraries, and the following software have

been installed:

• SenseHat library support

• OpenCV libraries

• SQLite database

• OpenSSL support

In addition, while we can reuse certificates, we do need to manually create and

install the certificates for each Pi. But all of this really comes into play when dealing with

a higher-scale building of IoT devices, and before we go, let’s talk about that and some of

the tools and techniques to install software on devices at scale.

https://doi.org/10.1007/978-1-4842-5860-6_12#DOI

578

 Custom Buildroot
First up is getting the operating system and necessary parts installed onto the device

beyond a base out-of-the-box image. Buildroot uses a custom set of makefiles and

configurations for creation of a Linux system intended for embedded system. We can use

buildroot to custom make our Pi image complete with any customizations that we need.

This allows us to start with a smaller size Linux OS and only add the libraries we want

and not the one we don’t. With this, we can create a final sdcard.img with the image we

want. This image can contain all the necessary dependencies we mentioned earlier at

the same versions. And if you are writing this for your own personal use, you can even

embed your Wi-Fi SSID and password so that you won’t have to manually add it when

initializing your new Pi.

In order to use the buildroot system, you will need to download the zipped software.

The software will contain all the necessary scripts to build and customize. The buildroot

for Raspberry Pis can be found here: https://buildroot.org/downloads/; the code is

updated often and you can lock yourself to an older version or use a newer version. But

this gives you a baseline with the buildroot; it will build all the necessary binaries for

your application.

The one trick of using the buildroot is where to build it at; if you are on a Linux

computer, you can run all the commands locally and create your image from there;

however, on a Mac or Windows, we will have to use a Dockerfile to build in a container,

but be forewarned, this can be a very large container and may take some time. But the

process of creating your image from the buildroot is fairly straightforward.

 1. Download and uncompress the buildroot version you’ve chosen.

 2. (Optional) Add any custom interfaces or setup.

 3. (Optional) Set any flags for the makeconfig that you want to use in

addition to the default ones.

 4. (Optional) Update the post build script for anything that needs to

be executed after the image is ready.

 5. Compile the application into an image ready for being deployed to the Pi.

We will create a buildroot together that is good for running local Raspberry Pis. For our

buildroot, I’ve done a few customizations that I will touch on, although I haven’t added all

the library support needed. The previous libraries will have to be added post build.

Chapter 12 Final thoughts

https://buildroot.org/downloads/

579

I mostly wrote this image so I would have Pi image readily available to just plug in and

restart without having to hook up to the computer to manually run.

In Listing 12-1, this is the complete Docker file that will create an image with a few

customizations for a good base image that allows SSH and Wi-Fi access.

Listing 12-1. Buildroot to build an image for a Raspberry Pi 4, in file Dockerfile.

buildroot

Set to allow us to run configuration as root

ENV FORCE_UNSAFE_CONFIGURE 1

Get WGET and WPASupplicant we need both to setup the files

wget is needed for the download, wpasupplicant is needed for creating

the Root

The rest are needed to build with the makefile

①
RUN apt-get update; \

 apt-get install -y --no-install-recommends \

 wget wpasupplicant \

 patch \

 cpio \

 python \

 ca-certificates \

 unzip rsync bc bzip2 ncurses-dev git make g++ file

Working

②
ARG buildroot=buildroot-2019.05.3

#ARG buildroot=buildroot-2019.08.3

not working most recent

#ARG buildroot=buildroot-2019.11.1

③
Download the binary

RUN wget http://buildroot.org/downloads/$buildroot.tar.gz

Uncompress it

RUN tar xvzf $buildroot.tar.gz

Chapter 12 Final thoughts

580

Partial how to https://malware.news/t/enabling-wifi-and-converting-the-

raspberry-pi-into-a-wifi-ap/20667

And the Wireless Lan file

To the interfaces directory.

RUN ls -al

RUN ls -al ./$buildroot/

RUN ls -a ./$buildroot/board/

RUN ls -a ./$buildroot/board/raspberrypi

④
COPY interfaces ./$buildroot/board/raspberrypi/interfaces

WPA Supplicant

https://askubuntu.com/questions/138472/how-do-i-connect-to-a-wpa-wifi-

network-using-the-command-line

install the wpa_passphrase and use it to create the file

Add the Pass Phrase

Need to make sure we have this app on the debian

(all the other raspberrypi* are symlinks to this folder)

⑤
RUN wpa_passphrase "Nusairat Wireless" "password" >> ./$buildroot/board/

raspberrypi/wpa_supplicant.conf

RUN more ./$buildroot/board/raspberrypi/wpa_supplicant.conf

Add items to the post build to enable the interfaces

⑥
COPY buildroot_add.txt .

RUN cat buildroot_add.txt >> ./$buildroot/board/raspberrypi/post-build.sh

RUN more ./$buildroot/board/raspberrypi/post-build.sh

Need to enable certain options available for the WPA Supplicant

COPY added_options.txt .

RUN cat added_options.txt >> ./$buildroot/configs/raspberrypi4_defconfig

RUN echo "RasPi Config :: " && more ./$buildroot/configs/raspberrypi4_

defconfig

Chapter 12 Final thoughts

581

⑦
Adjust base on using a Pi 3 or 4

RUN cd $buildroot && \

 make raspberrypi4_defconfig

This is the big run

RUN cd $buildroot && \

 make

 ➀ Install necessary debian libraries that we will need to use to compile

and build the image.

 ➁ Set the version of the buildroot we are planning to use.

 ➂ Download and unzip the buildroot image.

 ➃ Copy over custom interfaces for the Pi board.

 ➄ Use the wpa_passphrase to generate the wpa_supplicant file needed

to have the Wi-Fi SSID and password on the board by default.

 ➅ Copy our custom buildroot which targets the interfaces and packages

we need for the Pi.

 ➆ Make config the Pi for Raspberry Pi 4 and build the image.

Note the last step will take quite a bit of time; it could even be over an hour

depending on your computer’s speed and the docker resources. You will notice that we

did three customizations for this Dockerfile that brought in external files. Let’s examine

each of these files and the customizations.

First off are the interfaces in Listing 12-2; this will add in the wpa-supplicant we

created in the docker file and allow us to have wireless connectivity. By default, with the

buildroot only Ethernet connection is supported.

Listing 12-2. Wireless interfaces for the buildroot

RustIOT :: Interfaces added

auto lo

iface lo inet loopback

 auto eth0

Chapter 12 Final thoughts

582

iface eth0 inet dhcp

 pre-up /etc/network/nfs_check

wait-delay 15

auto wlan0

iface wlan0 inet dhcp

 pre-up wpa_supplicant -B -Dnl80211 -iwlan0 -c/etc/wpa_supplicant.conf

 post-down killall -q wpa_supplicant

wait-delay 15

iface default inet dhcp

Next up, in Listing 12-3 is the buildroot medications; these will copy configurations

and others from our local to the eventual image. By default, you don’t necessarily

need to do this, and there is a default configuration. But we need to also add our wpa

supplication and interfaces.

Listing 12-3. Package copying for the buildroot

RustIOT :: Buildroot add additions

cp package/busybox/S10mdev ${TARGET_DIR}/etc/init.d/S10mdev

chmod 755 ${TARGET_DIR}/etc/init.d/S10mdev

cp package/busybox/mdev.conf ${TARGET_DIR}/etc/mdev.conf

cp board/raspberrypi4/interfaces ${TARGET_DIR}/etc/network/interfaces

cp board/raspberrypi4/wpa_supplicant.conf ${TARGET_DIR}/etc/wpa_supplicant.conf

#

And last up, we are adding extra configurations for the makefile config. The additions

in Listing 12-4 are used to add the wireless support, enable SSH root login access, and set

the password. By default, root SSH access is not available, which would mean we would

only be able to log in by an attached keyboard and monitor.

Listing 12-4. Makefile build options for the buildroot

BR2_ROOTFS_DEVICE_CREATION_DYNAMIC_MDEV=y

BR2_PACKAGE_RPI_WIFI_FIRMWARE=y

BR2_PACKAGE_WPA_SUPPLICANT=y

BR2_PACKAGE_WPA_SUPPLICANT=y

Chapter 12 Final thoughts

583

BR2_PACKAGE_WPA_SUPPLICANT_NL80211=y

BR2_PACKAGE_WPA_SUPPLICANT_PASSPHRASE=y

Needed for the DHCP Clients

#BR2_PACKAGE_DHCP_CLIENT=y

Add SSH

BR2_PACKAGE_OPENSSH=y

BR2_TARGET_ENABLE_ROOT_LOGIN=y

BR2_TARGET_GENERIC_ROOT_PASSWD="1234"

Set the size of the ROOTFS

BR2_TARGET_ROOTFS_EXT2_SIZE="132G"

Once the build is complete, you will have on the docker image a usable SD card

image in the Dockerfile. In order to pull the image created by the Dockerfile, you will

have to attach a running container and copy the file locally. In Listing 12-5, we run

through the command-line steps to copy the file from the running container to the local

filesystem.

Listing 12-5. Retrieving the sdcard.img from the docker container

➜ docker build -t br_test -f Dockerfile.buildroot .

➜ docker create -ti --name dummy br_test bash

 7e8846c0a1a4437c1b467d4ebec1c31746c344bc94ad3597dd43f9c9a81b7354

➜ docker cp

7e8846c0a1a4437c1b467d4ebec1c31746c344bc94ad3597dd43f9c9a81b7354:/

buildroot-2019.05.3/output/images/sdcard.img ~/buildroot/sdcard.img

docker rm -f dummy

The key is when you create the image, it will output a long id of the image; you use

that as a reference to pull from the directory structure of the image we created on the

dockerfile. And then remove the running container once finished. Ideally, this kind of

automated process can be put inside CI build system, and obviously after this, you will

have to write the image to put the image onto the SD cards like we did in Chapter 7.

Chapter 12 Final thoughts

584

 Provisioning the Application
Finally, we need to put the application onto the board along with the certs and a device

id. This is where it becomes a bit more variable. You wouldn’t want to wrap custom certs

into an image; that is just overly expensive. Ideally, the certificates should be created

ahead of time, even batched up so you always have many to pick from. Then when you

are ready to provision the board, you can push them directly on to either the card itself or

onto a provisioned board. In general, you’d want to then start up the application and run

through some scripts to make sure everything works. This burn in process is designed to

test the board, makes sure the certificates work, and makes sure all the applications work

as designed. Here, you’d assign the device id either via automated script or by calling out

to backend servers to realize this board is active and legitimate. This burn in process also

helps detect any defects in the hardware and allows you to remove that board before it’s

sold to a consumer or used by yourself.

Last Words
Books are a labor of love, and countless hours away from friends and family to write,

this book was over a year in the making and I took quite a few pivots during the process

based on what was available and ready. And I believed for good memory management,

security, and beauty of code, Rust allows for amazing IoT projects to be created.

Good luck.

Chapter 12 Final thoughts

585
© Joseph Faisal Nusairat 2020
J. F. Nusairat, Rust for the IoT, https://doi.org/10.1007/978-1-4842-5860-6

Index

A
Amazon Web Services (AWS), 291
Auth0

application, 243
create authorization, 248, 250, 252
create user, 253–256
setting up, 243–246, 248

Authentication endpoints
Auth0, 243
authorization vs. authentication, 240
login across lines, 239
OAuth 2, 240, 241
OAuthZ/AuthN, applying, 241, 242
tokens

access token, 268–270
authorization check, 271–273
ID, 264, 265
programmatically parse, 266, 267
refresh, 274, 275

world Wide Web’s mainstream, 239
Authorization, 240

B
Backend design, 37
Borrowing and ownership

memory, 23–25
passing method and returning, 23
passing string, 22
parsing u32, 22

reference/dereferencing, 25
setting variable, 21

C
Camera

cross compilation
Docker, 490, 491
OpenCV libraries, 490
Pi, 490
rust-embedded project, 491–493,

495, 497, 499
rust-embedded project, 496

deploying Pi, OpenCV install, 520–523
facial recognition, 485
goals, 484
installation, 485, 486, 488, 489
video content, type, 483, 484

Cap’n Proto
advantages, 206, 207
definition, 204
installation, 210
vs. JSON, 209
microservices, 209
Protobuf, 205, 206
RPC, 207, 208
rust

client, creating, 216, 218, 219
implementing application, 208
message, define, 211–215
MQTT layer, 219–225

https://doi.org/10.1007/978-1-4842-5860-6#DOI

586

retrieval_svc, 225
RPC server, creating, 226–234

Cargo
commands, 29, 30
default package manager, 29
feature flags, 30
release process, 30, 31

Command Query Responsibility and
Segregation (CQRS), 183

aggregator, 186–189
asynchronous layer, 178
command and event, 184–186
commanded endpoint, 190–196
definition, 175
dispatcher, 189, 190
environment, setting up, 182
eventsourcing, 180
event stream

eventsourcing package, 197
executor creation, 197, 198
stream monitor, 199–204

eventual consistency, 177
Gotchas, 182
implementing

application, 181, 182
solution, 180
steps, 178, 179
typical model, 175, 176

Commands, sending
application

client side, 546, 547
IPC client, 547–550
IPC server side, 544, 545
message queue,

subscribe, 542–544
video loop, integration, 550, 552

video file, uploading, IPC, 541

Configurations, Kubernetes
controllers (see Controllers)
ingress controller, 339, 340
namespace, 322, 323
service (see Services)
yaml files, 322

connection_method, 286
Containerization

abstraction layer, 294
application deployments, 295
docker layers, 300–303
full machines, 294
virtual machine, 295, 296

Containers
build execution, 305
cargo build--release, 304
docker, 297
image tag, 306
kernel, 298
multiple VMs, 299
rust application, 304
self-contained images, 298
server-side application, 299
VMs, 298

Controllers
accessMode, 331
basic_deploy.yaml, 325
deployment, 331
flow from pod to filesystem, 328
get pods, 333
get pvc, 334
iot namespace, 323, 324
ki get pods, 325
kubectl command, 330
local/upload_svc image, 323
logging, 335
PersistentVolumeClaim, 329, 330
pod configuration, 326

Cap’n Proto (cont.)

Index

587

port-forward, 335
re-query, 326
RESTful endpoints, 331
StatefulSet, 323, 332
upload-dep-basic deployment, 327
volumeClaimTemplate, 334

Cryptographic operations, 416
Custom buildroot

Dockerfile, 578–581
Linux, 578
makefile build options, 582
makefiles and configurations, 578
package copying, 582
provisioning application, 584
sdcard.img, 583
software, 578
wireless interfaces, 581

D
Database design

architecture, 39
enumerations, 39
media_datas table, 38
one-to-many relationship, 38

Data services
cloud provider, 290
data store interactions, 290
EventStore, 290
MQTT, 291

Degrees, minutes, seconds
(DMS), 101

Deployment
data services, 290
Docker (see Docker)
gitlab-ci, 289
Kubernetes, 389
microservices, 290, 389

Postgres, 291
traditional methodology, 291

Deployments, helm
built-in systems, 347
deletes/redeploys, 348
dependencies, 348
directory structure, 350, 351
EMQX chart, 349
eventstore, 348
helper template, 352
ingress, 365, 366
MQTT (see MQTT service)
sealed secrets, 350
secret service, 353, 354
template files, 351

Device authentication flow
authentication library, 470, 471
Auth0 FlowDelegate, 476–478
entry point struct, 475, 476
method, 471–473
rasp-auth library package, 469
Raspberry Pi app integration, 479, 481
VisualDisplay trait, 474, 475
Yup OAuth 2, 468, 469

device_code, 259
device_id, 535
Diesel

get_connection, 76
Diesel

command-line tool, 57
configuration app, 57, 58
database tables, 58, 59
deleting, 68
derive enum crate, 71–73
enumerations, 69 (see Enumerations)
inserting, 66, 67
middleware (see Middleware)
ORM, 65

Index

588

querying, 68, 69
schema, 56
standard relationships, 73
struct, 65
UUID, 74, 75
well-documented full-featured

extensible, 56
Digital Ocean

adding domain, 378
contexts/switch, 383
creating cluster, 376
depolying, helm chart, 386–388
dns entry, 379, 380
docker images, 385, 386
Gitlab CI/CD pipeline, 384
kubeconfig, 381
kubectl command, 382
kube-system, 381
minimal configuration, 372
Postgres instance, 372
selecting data center and pools, 374
setting name, cluster, 375
setup page, 373

Docker
artifacts, 292
containerization (see Containerization)
database

GIS, 59, 60
--name 60
-p 61
Postgres, 59
Redis+Mongo+Spring app, 59
running containers, 61
running generation scripts, 62–64
schema file, 64, 65
starting, 62
stopping, 61

PaaS, 292
virtual machines, 292

Dockerfiles
MQTT service, 311, 312
retrieval service, 312, 313
upload service, 310

E
Enumerations

media_datas, 71
MYSQL, 70
one-to-many relationship, 69
types, creation, 70

Eventual consistency (EC), 9
Exchangeable Image File Format (EXIF), 94

F
Facial recognition, 485
File uploads

FileMetaData enum, 117
HTTP requests, 110, 111
middleware crate, 113
multipart, 110, 111
retrieval service, 110
router, 112
SaveData enumerations, 116, 117
saving the file, 118, 119
send_to_retrieval_svc, 115
unique id, 111

frames_per_file variable, 513

G
Geographic information system

(GIS), 59, 101
Google Cloud Platform (GCP), 291
grant_type, 260

Diesel (cont.)

Index

589

GraphQL
Facebook, 135
Juniper, 141
mutations, 138, 139
playground, 140, 141
problems, 134
REST, 134
RESTful query, 135–137
subscriptions, 139

H
handle_command, 187, 188
handle_video function, 512
HapKit Accessory Protocol

(hap-rs), 554
Helm

chart data, 346
chart file structure, 344, 345
deploy directory, 366
deployment (see

Deployments, helm)
deployment package manager, 341
docker-for-desktop, 369
dry run/debug, 367, 368
Golang style syntax, 341
image tags, 342
installation, 342, 343
manual process, 340
memory/CPU applications, 342
microservices, 341
release attributes, 346
replicas, 342
retrieval service (see Retrieval

service, helm)
templates, 345
values.yaml, 346, 347
yamls, 342

HomeKit
add accessory, 569, 570
add available devices, 571
Apple, 553
defintion, 553
generic temperature sensor,

implementation, 557–559
hap-rs

accessories, 554
definition, 554
motion sensor,

characteristics, 556
Pi configuration, 556, 557
thermostat, characteristics, 555

manager module, 566
module, 567, 568
motion sensor,

implementation, 563–565
Rasp Pi

display message, add, 572
motion sensor, add, 574, 575
thermostat sensor, add, 573

temperature sensor,
implementation, 560, 562

video module, 565

I
i2c (pronounced eye-squared-cee)

protocol, 435
Interactions, creating

channels, 456
commands, 456
daily module, 459, 461, 462
joystick, 463, 464
modules, 456
rx.recv().await, 465–467
tokio async run, 457, 459

Index

590

Internet of Things (IoT)
beneficial application, 3
board application, 12, 13
Cloud, 9
consumer, 1
customizable solution, 2
deploying, 40
devices, 1, 2
docker, 41
hardware, 5
hardware device, 1
HTTPS path, 5
microservice architecture, 6
ML, 6
mobile devices, 5
MOSFET, 1
MQs, 5
open source community, 2
OTA, 3
Raspberry Pi, 9
reference, 2
reuse certificates, 577
software libraries, 577
source code, 10
techniques, 9
TLS, 6
web application, 10–12
Wi-Fi connected, 1

Inter-process communication
(IPC), 540

ipc-channel, 541

J
Java Web Token (JWT), 264
Joystick control, sensehat-stick-rs, 455
JSON Web Token (JWT), 241
Juniper

context object, 142
creating mutations, 146
creating queries, 144, 145
integrating iron

route, 147–149
setting up, 142
setting up schema, 143

K
Kubernetes

configurations (see Configurations,
Kubernetes)

container orchestration, 314
Docker control plane, 320
helm charts, 371
Kubeadm, 371
kubectl, 321
master, 318, 319
Minikube, 319
node (see Nodes)
pod, 314, 315

L
Learning rust, 15, 16
Lightweight Directory Access Protocol

(LDAP) system, 240

M
Machine learning (ML), 6
Message queues (MQs), 5
Message Queuing Telemetry Transport

(MQTT), 149
certificates

certificate authority (CA) vs.
self- signed, 277

Index

591

client, 284, 286
creating server, 278

container portion, 362, 363
HTTP port, 364
message queue

service, 286–288
TCP, 275, 276

Messaging
calling messaging service

Eclipse Mosquitto, 152
JSON example, 153
microservice, 156, 157
multi-level wildcard (+), 154
publish, 155
single-level wildcard (+), 153
subscribe, 154

design, 150
health topic, subscribe,

160–163, 165, 166
IoT devices, 149
local messaging service, 151, 152
message queue

middleware, 167–170
publish function, 166
publish-subscribe protocol, 149
recording module, 170–172

Metadata
creating struct and sending HTTP

request, 122
FileUpload, 121
parsers, 120
parsing incoming data, 129
reqwest Client, 124
retrieval service, 121
saving data, 130
storing, 124
updating database, 125, 127
updating structs, 127, 128

Metal-oxide-semiconductor field-effect
transmitter (MOSFET), 1

Microservices
application by service, 34
cloud high availability, 35
cross-service

communication, 34
external application, 35
large vs. small instances, 36
small instances, 35

Middleware
AfterMiddleware, 52
AroundMiddleware, 52
BeforeMiddleware, 79, 80
BeforeMiddleware, 52
connection pool, 76, 78, 79
database connection, 77
deleting, 81, 82
DieselMiddlewareConnPool, 78
DieselReqExt, 80
handlers, 52
instantiating, 77
iron_diesel_middleware, 76
logging, 52–54
macros, 51
performing operations, 78
timer, 54–56

monitor_controls function, 548
monitor_notifications/subscribe

function, 161, 542
mqtt.fullname function, 352

N
Nodes

architecture, 316
cAdvisor/Prometheus, 317
container runtime, 317

Index

592

Kubelet, 317
proxy manager, 317
virtual machine hardware, 316

O
Object-relational mapping

(ORM), 56
on_read and on_update

methods, 556
Open Computer Vision (OpenCV), 485

defintion, 499
installation, 500
running application

displaying camera, 504
facial recognition,

capturing, 505–507
image content, save, 516–518
running cascades, 508, 509
text to video, apply, 514, 515
trained cascades, 508
video capturing, 501–504
video content, saving, 510–514
video processing, calling, 519

Over-The-Air (OTA), 3

P, Q
Parameters

JSON parsing, 47, 49, 50
params parsing, 46, 47
retrieve request, 45
URL REST parsing, 47

Parsing image data
data structure, 95, 97
exif reader, 97, 98
EXIF, 94

GIS, 101–104
Kamadak EXIF, 94, 95
OSX, 92
types, 98–101
uploading pictures, 92, 93

persist method, 231
Platform-as-a-service

(PaaS), 292

R
Raspberry Pi, 33, 392

assemble, 394
board labeled, 395
cross compile, 414, 415
debugging cable, 393
developing

arguments, 421–423
command-line

arguments, 427
device certificates, 421
heartbeat

creation, 423, 424, 426
main method, 419
requirements, 419
timer, 426
UUID creation, 420

GPIO pins, 396, 398
heat sinks, 394
hello world application, 414
image creation, 392
kit, 393
operating system, 400

final step, 408
initialize the disk, 402, 404
install image, 401, 405, 406
Linux box, 404, 405
screen capture, 409

Nodes (cont.)

Index

593

SSH access, 412
unpack the file, 402
Wi-Fi setup, 410–412

SD card, 393
Recording module, 542
recording_monitor

variable, 547
Remote Procedure Call (RPC), 204
Representational State Transfer

(REST), 134
request/response function, 43
RESTful endpoints, 40
Retrieval service, helm

diesel migrations, 359, 360
env database reference, 359
HTTP command, 358
init containers, 361
RPC service, 359

run_face_detect function, 502
Rust

basic application, 17
borrowing and ownership (see

Borrowing and ownership)
class-based inheritance-type

language, 14
command-line tools, 14
components to purchase, 7, 8
embedded, 15
Golang applications, 33
learning, 15, 16
memory management, 14
microservice, 14
modules, 14
multi-paradigm

programming, 6
mutation, 19
pre-requisites, 7
types, 20

variable name, 18, 19
web-blown features, 33

S
Scratch containers

C libraries, 307
dockerfile, 307, 308
.dockerignore, 308, 309
musl, 308

Security
authentication endpoints, 239
device flow, 257–263
goals, 238
techniques, 238

send_temperature method, 562
send_to_server, 533
Sense HAT

all-in-one board, 430
board features, 431
capabilities, 429
chipsets, 430
config.txt, 434
GPIO extender, 433
hardware, 430
interaction (see Creating interactions)
joystick control, 431
login authorization flow, 429
multiple background processes, 431
Raspberry Pis, 430
sensors (see Sensors)
space limitations, 432
textual displays, 429
unboxing, 432

Sensors
chipsets, 435
debugging tools, 437
i2c tools, installation, 436

Index

594

LED display, 438, 439
controls, 444–449
frames, 440–443
adding sensehat-screen, 439

running i2cdetect, 437
SCL, 435
SDA, 435

Serial clock (SCL), 435
Serial data (SDA), 435
Server certificates

CA root, 278, 279
file extensions, 278
message queue

server, 280, 281
MQTT server, 282–284

Service-level agreement (SLA), 526
Services

cluster ip, 336, 337
headless, 338
kube-proxy, 336
node port, 338, 339
port-forward, 336

Single-page web applications
(SPAs), 134, 250

SQLite
adding entry, database, 530, 531
database, creating

interactions, 529, 530
definition, 526
design, 527, 528
SQL-92 features, 527
video file, uploading, 534

failures, 532
marking entry, 538
marking entry, not successful, 539
sending to server, 535, 537
src/camera/db.rs, 533–535

T
Tagged Image File Format (TIFF), 94
Temperature display

atmospheric interactions, 452–454
Cargo.toml, 450
feature flags, 450
gyroscope and accelerometer, 449
humidity sensor, 451
thermometer’s reading, 451

Traits
abstraction, 25
instantiating, 27, 28
optional implementation, 26
person to student, 27
Typemap, 29

Transport Layer Security (TLS), 6

U
Upload service

container section, 356
metadata label, 355
resources section, 358
selector area, 355
statefulset, 355
values.yaml references, 357

upload_ss.yaml file, 355

V
Video data

audio codec, 109, 110
data structure, 105, 106
mp4 parser, 105
reading file, 106
rust, 104
static image, 104
VideoMetaData model, 107

Sensors (cont.)

Index

595

Video, upload, see SQLite
Viola-Jones algorithm, 507

W, X, Y, Z
Web framework

command line parameters, 82, 84, 86
creation, Hello World, 42, 43
handling errors, 86, 87
Hyper, 41

Iron, 42
loggers, 88, 89
mobile application, 41
parameters (see Parameters)
primary services, 41
redirects, 44
response codes, 44
rocket, 42
routing, 50, 51

writer.release(), 530

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Preface
	Chapter 1: Introduction
	Who Is This Book For?
	What Is IoT?
	IoT 10K Foot Picture

	Why Rust?
	Pre-requisites
	Components to Purchase

	Goals
	Source Code

	Web Application
	Board Application
	Basic Rust
	Rust Origins
	Command Line
	Modules
	Microservices
	Embedded

	Learning Rust
	Installing Rust
	Hello World

	Writing in Rust
	Variables and Data Types
	Borrowing and Ownership
	Memory
	Reference and Dereferencing

	Traits
	Typemap

	Cargo
	Feature Flags
	Creating a Release

	Summary

	Chapter 2: Server Side
	Goals
	Microservice Architecture
	Why Microservices?

	Backend Design
	Database Design
	RESTful Endpoints
	Deploying
	Docker
	Web Framework
	Choosing a Web Framework
	Start Up Basic Iron
	Hello World
	Redirects
	Response Codes
	Parsing Parameters
	Params Parsing
	URL REST Parsing
	JSON Parsing

	Routing
	Middleware
	Logging Middleware
	Timer Middleware

	Database with Diesel
	Getting Started
	Configuring the App
	Creating the Database Tables
	Generating the Database with Docker
	Docker Running Containers
	Stopping Docker
	Starting Docker
	Running the Generation Scripts
	Schema File

	Basics
	Inserting
	Deleting
	Querying

	Using Enumerations
	Diesel Derive Enum Crate

	Relationships
	Using a UUID
	Integrating with Our Application
	Diesel Write Your Own Middleware
	Implementing the Connection Pool
	Adding the Middleware
	Adding a Method to Request

	Diesel Middleware

	More Web Framework
	Command-Line Parameters
	Error Handling
	Loggers

	Summary

	Chapter 3: File Uploading and Parsing
	Goals
	Parsing Image Data
	EXIF
	Kamadak EXIF
	Data Structure
	Reading the Image
	Parsing Data Types
	Parsing GIS

	Parsing Video Data
	Mp4Parser
	Our Data Structure
	Reading the Video

	File Uploads
	Upload File
	Saving the File

	Creating the Metadata
	Upload File
	Send Data to Retrieval Services

	Storing the Metadata
	Update the Database
	Update the Structs
	Parse the Incoming Data
	Save the Data

	Summary

	Chapter 4: Messaging and GraphQL
	Goals
	GraphQL
	Problems with REST
	GraphQL to the Rescue
	Query
	Mutations
	Subscriptions
	Playground

	Juniper
	Setting Up Juniper
	Creating the Context
	Setting Up the Schema
	Creating a Query
	Creating a Mutation
	Integrating with the Iron Router

	Messaging
	Purpose in the IoT System
	Our Design
	Starting Up Local Messaging Service
	Calling Messaging Service Locally
	Single-Level Wildcard (+)
	Multi-Level Wildcard (#)
	Subscribing
	Publishing

	Create the Messaging Service
	Subscribe to the Health Topic
	Publish to the Recording Topic
	Message Queue Middleware
	Recording Module

	Summary

	Chapter 5: Performance
	Goals
	CQRS
	CQRS Steps
	Which CQRS to Use?
	Event Sourcing
	Implementing in Our Application
	Gotchas

	Setting Up Our Environment
	Cargo Update

	Creating Our CQRS Objects
	Command and Event
	Aggregator
	Dispatcher

	Calling Our Commanded Endpoint
	Processing the Event Stream
	Creating the Executor
	Subscription Stream Monitor
	Reading the Connection Stream
	Creating Connection to Stream
	Launching the CQRS Monitor Service
	Run It All

	Cap’n Proto
	Cap’n Proto
	Advantages of Cap’n Proto
	Cap’n Proto RPC
	Cap’n Proto for Rust
	Implementing in Our Application
	Installing Cap’n Proto
	Define the Message
	Creating the Client
	Message Queue Layer
	Retrieval Service Layer

	Summary

	Chapter 6: Security
	What We Aren’t Covering
	Goals
	Authenticate Endpoints
	Authorization vs. Authentication
	OAuth 2
	OpenID Connect

	Applying AuthZ and AuthN
	Auth0
	Setting Up Auth0

	Authenticating
	Device Flow
	Processing the Tokens
	ID Tokens
	Programmatically Parse
	Access Tokens
	Implement Authorization Check
	Refresh Tokens

	Securing MQTT
	Certificates
	Certificate Authority (CA) vs. Self-Signed Certificates
	Creating Server Certificates
	Generate CA Root Certificate
	Message Queue Server Cert
	Updating the MQTT Server

	Creating Client Certificates

	Creating Our New Message Queue Service

	Summary

	Chapter 7: Deployment
	What to Deploy
	Microservices
	Data Services

	How to Deploy
	Deployment Options
	Goals

	Docker
	What Is Containerization
	Full Machines
	Virtual Machines
	Containers
	Docker Layers
	Creating Our Own Containers
	Scratch Containers

	Using Docker in Our Applications
	Upload Service
	MQTT Service
	Retrieval Service

	Deploying with Kubernetes
	How Kubernetes Works
	Pods
	Nodes
	Control Plane

	Deploying to Kubernetes
	Kubectl
	Kubernetes Configurations
	Namespace
	Controllers
	Services
	Ingress

	Helm Charts
	What It Does
	Installing Helm
	Creating a Helm Chart
	Templates
	Release Metadata
	Chart Data
	Values.yaml

	Mapping Our Deployments
	Dependency Helm Charts
	Deploy the Extra Charts
	EventStore
	EMQX
	Sealed Secrets

	Deploying Our Chart
	Helper File
	Secret
	Upload Service
	Retrieval Service
	MQTT Service
	Service
	Ingress

	Deploying Your Helm Chart

	Standing Up the System
	DigitalOcean
	Register Your Domain

	Attaching to DigitalOcean Kubernetes
	Deploying to DigitalOcean
	Setting Up Gitlab CI/CD Pipeline
	Build Docker Images
	Deploying the Helm Chart

	Summary

	Chapter 8: Raspberry Pi
	Goals
	Raspberry Pi
	Create Raspberry Pi Image
	Unbox the Raspberry Pi
	Assembling Raspberry Pi
	GPIO

	OS Software
	Installing the Software
	Unpack the File
	Wipe and Initialize the SD Card
	Install Image

	Final Setup Steps
	Set Up Wi-Fi
	Setup SSH Access

	Client Application
	Hello World Application
	Cross Compiling

	Developing the Client Application
	Creating UUID
	Transferring Certificates
	Setting Up Arguments
	Creating the Heartbeat
	Keep Alive
	Run from the Command Line

	Summary

	Chapter 9: Sense HAT
	Goals
	Hardware
	Install
	Sensors
	LED Display
	Frames
	LED Controls

	Temperature Display
	Joystick Control

	Creating Interactions
	Tokio Async Run
	Daily Runs
	Joystick
	Receiver

	Logging In
	Yup OAuth 2
	Authentication Library
	VisualDisplay
	Entry Point Struct

	Auth0 FlowDelegate
	Raspberry Pi App Integration

	Summary

	Chapter 10: Camera
	Goals
	Facial Recognition
	Installation
	Cross
	Rust Embedded – Cross Crate
	Using Cross
	Customizing

	Open Computer Vision
	Installing OpenCV
	Running the Application
	Capturing the Video
	Displaying to the Camera
	Capturing the Facial Recognition
	Using Trained Cascades
	Running the Cascade

	Saving the Video Content
	Apply Text to the Video
	Saving the Image Content
	Calling the Video Processing

	Deploying to the Pi
	OpenCV Install

	Summary

	Chapter 11: Integration
	Uploading Video
	SQLite
	Design
	Creating the Interactions with the Database
	Adding Entry to the Database
	Uploading the Video File
	Sending to the Server
	Marking Entry Successfully Uploaded
	Marking Entry when Not Successful

	Sending Commands
	IPC
	Packet IPC

	Application
	Subscribing to the Message Queue
	IPC Server Side
	Client Side
	IPC Client
	Integrating on the Video Loop

	HomeKit
	HomeKit Accessory Protocol (hap-rs)
	Accessories

	Creating Our HomeKit
	Implement Generic Temperature Sensor
	Implementing Temperature Sensor
	Implementing Motion Sensor
	Video Module
	Manager Module
	Homekit Module

	Adding to Homekit

	Summary

	Chapter 12: Final Thoughts
	Custom Buildroot
	Provisioning the Application

	Last Words

	Index

